Even though I've solved it, I think what you say could help me with other problems where there isn't a simple substitution.
It is a general strategy - try to find a geometry which is simple - solve the problem in that geometry - then transform the solution back. It sometimes takes several goes ... but it can be a very powerful method.
Firstly, how would you factor things without the awkward radicals? Were you referring to the suggestion made by h6ss, or is there a different way?
That's right - the (a-1) etc was where the awkward radical came from. It may have been possible to factorize as you went using the fact that a,c,b,d > 0 but I don't know because I wouldn't have bothered with that. I couldn't tell what you'd tried because you didn't tell me and I wanted you to explore the system of equations more. As you marshal the facts about the system in front of you, ideas start to form.
I am clueless as to what geometric object the other three equations represent. I'm not very fluent in naming 3-D objects by their equation, much less 4-D, and I'm not totally sure what to do with that information...
It's something you get used to with experience just like you learn to recognize 3-4-5 triangles when they show up.
It may have been that the problem was part of a course in 4D surfaces so I could not be sure which approach to tell you about.
The problem you had described a set of surfaces in 4D using (a,b,c,d) as axis. The surfaces intersected at only one point where everything was positive. The first three were basically the same surface rotated 90deg in different directions. In 2D they would be something like ##Ax^2y=B## and the 3D they'd be ##Ax^2(y+z)=B##.
I have always been curious as to how I could tilt an equation and move the axis as you suggested (I remember one problem in particular that would've been much easier if I could do that, and I had to use an exceptionally long way of solving it). Also, all I know about a normal vector is how to determine one and that they relate to slope (my 10th grade class is learning logarithms currently). Should I learn more about them to help me with this problem.
You are in the 10th grade or you teach 10th grade?
One of the things you didn't say earlier was what level to approach the solution from.
By 10th grade there should have been some work on the basic transformation, at least in 2D. You have translation, rotation, and reflection, within a coordinate system, and you can transform to a whole new system like polar, cylindrical, and spherical... and even some strange ones like those that crop up in relativity. But I don't think you have been encouraged to think of moving an actual set of axis - iirc that level has students thinking of the coordinates as fixed.
If I had a function f(a,b,c,d) and moved the whole thing 1 unit in the +a direction, then the new function is f(a-1,b,c,d). It is the same as moving the entire coordinate axis one unit in the -a direction.
The coordinate transform is the math way of looking at a problem from another POV.
If you're worried about giving away answers, this is just for practice and learning new concepts; I took the problem from a test whose due date is passed.
That's not so much of the problem as that you learn more if you do the discovery process yourself. It is also more likely that you will be learning at an appropriate level.
Hopefully the discussion and the somewhat frustrating trail of having to nut through my earlier questions and hints gives you a deeper appreciation of math ;)