Challenging the Role of Photons in Explaining Light's Particle Behavior

  • Thread starter Thread starter Faradave
  • Start date Start date
  • Tags Tags
    Photons
Click For Summary
The discussion centers on the necessity of photons in explaining light's particle behavior, questioning whether they are essential or merely a conceptual tool. Some participants argue that the particle aspects of light, such as the photoelectric and Compton effects, could be explained without invoking photons by considering concepts like zero path length and remote contact. Others highlight that the Standard Model of particle physics incorporates photons as a consequence of symmetries in quantum field theory, suggesting their fundamental role in electromagnetic interactions. The debate also touches on the limitations of special relativity in defining a photon's frame of reference, with some expressing skepticism about the implications of such a lack of a frame. Overall, the conversation reflects ongoing inquiries into the nature of light and the theoretical frameworks used to understand it.
  • #31
Faradave said:
In such a frame, the photon energy and momentum still exist, no longer between emitting and absorbing electrons but in them (same as billiard balls).
No, if such a "frame" were valid, both the "energy" and "momentum" would be red-shifted to zero.

Your "frame" has some peculiar properties
  1. photons are at rest
  2. photons travel at speed c
  3. all distances are zero
  4. all times are zero
  5. photons have zero energy and momentum
None of this makes sense, which is what everyone has been telling you.
 
Physics news on Phys.org
  • #32
DrGreg said:
No, if such a "frame" were valid, both the "energy" and "momentum" would be red-shifted to zero.

Your "frame" has some peculiar properties
  1. photons are at rest
  2. photons travel at speed c
  3. all distances are zero
  4. all times are zero
  5. photons have zero energy and momentum
None of this makes sense, which is what everyone has been telling you.

Thank you, I was pondering how to respond to that one.
 
  • #33
Faradave said:
I agree there is confusion, understandably so, but is it mine? The model for light, like model for the atom, has been undergoing extensive revision since mankind first had one. Do you imagine we’re finished? Pinholes are not awfully different than photons. They offer collisions. What could be more particle-like than that?

As far as reference frames go, I was quick to recognize and concede to the need for relativistic inertial reference frames (RIRFs), as pinholes rely on path contractions. But as I believe I have shown, the error lies with current theory. A frame in which a photon “would be” at rest is not at all the same as a photon “being” at rest! The instantaneous velocity of a photon, determined as path length shrinks to zero, remains c. Thus, the frame is an RIRF. In such a frame, the photon energy and momentum still exist, no longer between emitting and absorbing electrons but in them (same as billiard balls).


I don't believe that electrons are like pinholes. They are more like diffraction patterns created by pinholes. As long as the electron is at a constant velocity, it exists as a perfect diffraction pattern/standing wave. If you distort that distribution, you accelerate the particle.

Accelerating an electron, is like moving the central portion of a spherically diffracted wave. That motion is then translated through the diffraction pattern at the speed of light. A photon is the embodiment of that dispersion of the interaction through the electron's diffraction pattern, since that dispersion will alter the way that the elecron interacts with all the other waves.

Accordingly, you can't have a photon reference frame because photons are just the redistribution of energy through a particle's wave pattern.
 
Last edited:
  • #34
DrGreg said:
No,...
DrGreg, thank you for taking the time to respond. I love your accent! When you say, “No” it has a convincing tone which I couldn’t hope to achieve. I’ll give it a try though. Ahem, “Touch the stars! Pinholes are ours!”

Aw, shucks. Even rhyming and color don’t seem to help.
DrGreg said:
…if such a "frame" were valid,…
For the benefit of latecomers, the “frame” referred to is a reference frame moving at speed c and parallel to any particular “photon”. Let’s refer to this as "Frame c" in this post and for simplicity, let’s assume the emitting and absorbing particles are both electrons occupying a different frame we’ll name "Frame<c", a relativistic inertial reference frame (RIRF). I put the term “photon” in quotes because I believe they are actually pinholes (photo-induced wormholes) but I will refer to photons normally now.

I’m afraid I see the question of validity settled. It was one of your fellow Brits, who showed us the way to instantaneous velocity, and I do say, it’s worked out quite well! The instantaneous velocity of a photon, determined as its path length shrinks to zero (as frame velocity goes to c), remains c. Frame c is an RIRF.
DrGreg said:
… both the "energy" and "momentum" would be red-shifted to zero.
If the momentum and energy were locked in a photon perhaps, but not when they are in objects. The emitting and absorbing electrons are massive and therefore can’t be at rest in Frame c. So they must be moving and not just capable of, but obligated to, have energy and momentum in that frame. The difference in their energy is one quantum, as verified in the disposition of their orbitals before and after the collision. With an instantaneous velocity of c giving a path length reduced to a point of contact, it is conceptually much easier to envision a hole than a particle. The pinhole projects as the trajectory of a light ray in Frame<c.
DrGreg said:
Your "frame" has some peculiar properties
Quantum tunneling, virtual particles, point particles, dark energy, renormalization… Nah! Ain’t nothin peculiar ‘bout physics!

But seriously, consider the pairing behavior of electrons. There are orbital filling, covalent bonds, ionic bonds even the Cooper pairs in metallic superconductors to illustrate the tendency that electrons pair in space for various lengths of time. To the extent that Einstein attributed dimensionality to time, there may also be a tendency that electrons pair in time over various distances in space. While I explain light as pinholes with slope c. The “quantum non-local connection” of the EPR paradox seems to offer us a spinhole (spatial interconnecting wormhole), with slope zero to explain entanglement. So, it’s not just outsiders who envision the utility of a "tiny wormholes" model. As I recall, John Wheeler’s quantum foam is also filled with them.
DrGreg said:
1. photons are at rest
Photons always travel at speed c in RIRFs, even Frame c. But there is no obligatory distance which must be traveled.
DrGreg said:
2. photons travel at speed c
Yes they do! They all do. That’s why Frame c is an RIRF.
DrGreg said:
3. all distances are zero
By "all distances", I assume you refer to those components of distance parallel to Frame c. The perpendicular components are unaltered. Now for the parallel components. While the Lorentz transformations do not explicitly contain this restriction, it is intuitive and consistent with observation that its effects, while independent of path length, do not extend beyond the emitting and absorbing particles. A solution might be to adjust the definition of “opacity” to restrict the transforms externally. In addition, pinholes, unlike photons are very narrow. The transform need only be considered within it. It is the unrestricted nature of current electric and magnetic field descriptions which have lead us to think otherwise.
DrGreg said:
4. all times are zero
Nothing ages in Frame c. And there is nothing to say transfer of energy between to colliding electrons takes any time at all. This is equivalent to the question, “Does a photon accelerate from an emitting electron or is it “born” at speed c? My impression is distinctly the latter for the photon model.
DrGreg said:
5. photons have zero energy and momentum
Photons have E= hf, as always but only as far as they travel (see reply to 1.)
DrGreg said:
None of this makes sense,…
You are obviously in very good company. I hope it makes more sense now.
DrGreg said:
…what everyone has been telling you.
“What do you care what other people think?”, R. Feynman, in a book title no less! Do you think he meant it?

Please excuse my sometimes, “playful” wording on a subject you obviously take seriously. I take it from your PF name, that you have an advanced degree in physics. I respect your accomplishment and value your opinion. I don’t think you should change that opinion based upon anything I’ve written. Demand proof! I believe Dr. Gabrielse and colleagues will be as pivotal to pinhole theory as Sir Arthur Eddington was to Relativity (description above, diagram attached).

Can you imagine the blunder though, if without testing, we continue in the assumption that light (from normal matter) is exactly the same as antilight (from antimatter). There could be entire distant galaxies of antimatter out there and their dim rays would be entirely invisible to us unless we adapt telescopes to detect the characteristic secondary gamma emissions resulting from remote annihilations. Here's to not keeping ourselves in the dark. Good day.
 

Attachments

  • Anti-H Illuminate.jpg
    Anti-H Illuminate.jpg
    19.2 KB · Views: 317
  • #35
A question was posed to me from outside PF. I will volunteer and respond to it here since, in my view, it represents the last, logically independent argument from Relativity against pinholes (photo-induced wormholes) as an alternative to photons. That is, I believe all arguments would challenge based upon validity of reference frame (as relativistic), length contraction (path = 0), time dilation (to infinity) or simultaneity. The following question is based upon the last of these and has not yet been raised here.
Suppose you’re right that “Frame c” (moving at light speed) actually is relativistic. It seems that you have still painted yourself into a corner regarding simultaneity. Many times you stressed that the electrons make “contact”, “collision” or have “zero path length” through a pinhole. But when there is an event such as contact, occurring in one place at one time, it must be that all observers agree on the event. But when a picture is taken of the night sky, no one agrees that any star is touching the camera!
This is a good point. I could give a wimpy answer like, “There aren’t really enough star electrons touching the camera for anyone to witness.” But that wouldn’t get to the heart of this issue. To be sure, Wikipedia in the first paragraph in, “Relativity of Simultaneity” says:
Where an event occurs in a single place-for example, a car crash-all observers will agree that both cars arrived at the point of impact at the same time.
I assert that a speed of light reference frame (Frame c) is a relativistic inertial reference frame because its motion is uniform and all photons have speed c (even those traveling zero distance). However, it remains true that no massive particle can achieve speed c. Thus, as has been stated here (#10) and in other forums, no observer can enter Frame c. Frame c is, in fact, the only place that we can be sure all observers will agree they did not see the collision! If you roll it about in your mind a bit, I think you’ll find that this is really quite consistent with what the questioner and Wikipedia have said.
 
Last edited:
  • #36
Faradave said:
I assert that a speed of light reference frame (Frame c) is a relativistic inertial reference frame because its motion is uniform and all photons have speed .


Ok,

Can you derive the transformations between your "Frame c" and the other inertial frames?
All the other inertial frames are connected by the Lorentz transforms, derive the transform that connects your "Frame c" with the rest.
 
  • #37
starthaus said:
Can you derive the transformations between your "Frame c" and the other inertial frames?
I use the limiting case where velocity of the frame approaches c. Time stops (goes to infinity), path length goes to zero and contact between emitting and absorbing particle occurs. I believe the particle aspects of light are not an accident or mysterious but a simple collision.

Controversy arises when people mistakenly presume a photon is “at rest” in Frame c. That is resolved two ways. First, a “photon’s” instantaneous velocity remains c as path length shrinks to zero. Zero path length is not itself problematic as there is no obligatory distance required for any photon in relativistic inertial reference frames (RIRFs). But with path length zero a photon is obviously superfluous. So second, photons were never more than a very useful accounting tool in any frame (in my view). I replace photons with pinholes (photo-induced wormholes).

There is room for debate about the meaning of “contact” as the position and velocity of electrons is uncertain and their diameters (let alone surfaces) are indeterminate for what are often referred to as “point particles”. But a functional definition is still available to us. For this discussion, “contact” is: sufficient proximity for transfer of kinetic energy (and momentum). In the test case illustrated in #34 asserting a remote collision between electron and positron (via light transmission) contact is: sufficient proximity to result in annihilation. I offer this as both necessary and sufficient to the confirmation of pinholes. Except for this discussion, such an occurrence is, to my knowledge, completely unanticipated. To the extent that contact may "work" at distances greater than zero (Planck length?), the discussion only shifts toward more established RIRFs and pinholes.
 
Last edited:
  • #38
Faradave said:
I use the limiting case where velocity of the frame approaches c.

So, where are your formulas for the transformation I asked you? Can you show them?
 
Last edited:
  • #39
l=ct, l'=c't', c=c' {...goose bumps}
 
Last edited:
  • #40
Faradave said:
l=ct, l'=c't', c=c' {...goose bumps}

There are not transforms, these are nothing.
 
  • #41
Faradave -- There's a good reason why the concept of photon has survived for over a century -- the concept is immensely useful, spanning many branches of physics, and it passed many tests with flying colours. Simply stated, there is no reason to challenge the idea of a photon -- there's no evidence at all that the concept is wrong.

To gain any legitimacy, you must show 1. that your ideas agree with experiment, and 2. the specifics of where current theory is not correct and your theory is.
You have yet to do this.

Lot's of luck.
Regards,
Reilly Atkinson
 
  • #42
Light from the sun is slowed when entering water. What is its speed after emerging from the water?
 
  • #43
Fysiks Phan said:
Light from the sun is slowed when entering water. What is its speed after emerging from the water?

c.

BTW, light is not slowed down in water, its path is lengthened. This is a complex phaenomenon.
 
  • #44
We know that light is slowed when passing through water. Is this slowing cumulative? What is the speed of the same light upon emerging from the water?
 
  • #45
Btw: I disagree. But let me put it another way. When I see objects that are under water, like a tasty tuna, I know that this light has passed through a given distance, let's say 100 feet. 100 feet is the same distance whether in air or water. Is the light from the tuna faster after leaving the water?
 
  • #46
Fysiks Phan said:
We know that light is slowed when passing through water. Is this slowing cumulative?

No.

What is the speed of the same light upon emerging from the water?

I have already answered that, c.
 
  • #47
Fysiks Phan said:
Btw: I disagree.

That's your problem. Taking a physics class might help.


But let me put it another way. When I see objects that are under water, like a tasty tuna, I know that this light has passed through a given distance, let's say 100 feet.

Actually light in the water has taken a complex, zig-zag path, not a straigh one like in vacuum.


100 feet is the same distance whether in air or water.

No, see above.



Is the light from the tuna faster after leaving the water?

No. It is still c.
 
  • #48
Fysiks Phan said:
We know that light is slowed when passing through water. Is this slowing cumulative? What is the speed of the same light upon emerging from the water?

This shows that you have literally no idea what Relativity in its special or general formulation is. None at all, which is alright, but not if you're trying to debunk photons, instead of learning basic physics.
 
  • #49
starthaus said:
...these are nothing.

They were quite something to Dr. Einstein, especially the last one, c=c'.
 
  • #50
starthaus said:
Faradave said:
l=ct, l'=c't', c=c' {...goose bumps}

There are not transforms, these are nothing.
Faradave, what is being asked for here are equations that express l' and t' in terms of l and t (although I'd prefer to use the symbol x instead of l), not just for the motion of photons but for any arbitrary events.

Hint: the Lorentz transform between two inertial frames is conventionally given by the equations

t&#039; = \gamma(t -vx/c^2)
x&#039; = \gamma(x - vt)​

where \gamma = 1/\sqrt{(1-v^2/c^2)}.
 
  • #51
DrGreg said:
Faradave, what is being asked for here are equations that express l' and t' in terms of l and t...
DrGreg, Thankyou for your kind assitance to me and Starthaus. I couldn't help but think these were rather generally available in PF and elsewhere such as (http://en.wikipedia.org/wiki/Length_contraction). And a look at the Starthaus posts/blogs suggest that full use of these has already been made.

The more basic equations I offered, while not transforms in themselves, contain all the elements necessary to derive them (with a little help from Pythagoras). Alas, like my pseudonamesake, my math (and Latex) skills are not up to par and I am left at the mercy of intuition and the benevolence of aquaintences such as yourself.

Also like Faraday, I love to attend lectures, particularly those offered by The Teaching Company. One entitled, "Einstein's Relativity and the Quantum Revolution" by Dr. Richard Wolfson, offered a form which I like:
t&#039;=t\sqrt{1-v^{2}}
and the same for length, where v is the velocity of the moving frame expressed as a fraction of lightspeed.
 
Last edited:
  • #52
Faradave said:
I assert that a speed of light reference frame (Frame c) is a relativistic inertial reference frame because its motion is uniform and all photons have speed c (even those traveling zero distance).
Hi Faradave, I agree with starthaus, you need to do more than assert this, you need to derive this. You have been given good reasons by many people why your assertion is wrong, so you need to back up your assertion with some solid derivation.

What you are being asked for is for the complete set of 4 equations of the following form:
t'=f1(t,x,y,z)
x'=f2(t,x,y,z)
y'=f3(t,x,y,z)
z'=f4(t,x,y,z)
which will allow you to transform from a standard inertial frame coordinates (t,x,y,z), to your frame c coordinates (t',x',y',z'). This transformation needs to transform all coordinates (t,x,y,z) in the standard inertial frame, not just those on a light cone as in post 39 and not just those which are co-located as in post 51.

Once you have given this transformation rule then you can prove that your frame c is inertial by writing down the laws of physics in the unprimed frame, doing the transform, and demonstrating that they have the same form in the primed frame. Anything less is insufficient.
 
Last edited:
  • #53
Faradave,

the reason starthaus, DaleSpam & myself are asking you for these transforms is because we don't believe there is any sensible answer that will apply apply between your "frame c" and a standard inertial frame, which is why everyone has been objecting. So it's up to you to prove us wrong and come up with a sensible answer as DaleSpam spelled out in more detail.
 
  • #54
DrGreg said:
Faradave,

the reason starthaus, DaleSpam & myself are asking you for these transforms is because we don't believe there is any sensible answer that will apply apply between your "frame c" and a standard inertial frame, which is why everyone has been objecting. So it's up to you to prove us wrong and come up with a sensible answer as DaleSpam spelled out in more detail.

Actually, we know that there is no such thing.
 
  • #55
DaleSpam said:
What you are being asked for is for the complete set of 4 equations of the following form:
t'=f1(t,x,y,z)
x'=f2(t,x,y,z)
y'=f3(t,x,y,z)
z'=f4(t,x,y,z)
which will allow you to transform from a standard inertial frame coordinates (t,x,y,z), to your frame c coordinates (t',x',y',z'). This transformation needs to transform all coordinates (t,x,y,z) in the standard inertial frame, not just those on a light cone as in post 39 and not just those which are co-located as in post 51.

You also need to show that there is an inverse transformation that has the following form:
t=f5(t',x',y',z')
x=f6(t',x',y',z')
y=f7(t',x',y',z')
z=f8(t',x',y',z')
which "goes the other way", i.e. transforms from the (t',x',y',z') calculated with the preceding transformation back to the original (t,x,y,z), and only to the original (t,x,y,z).
 
  • #56
DrGreg said:
...we don't believe there is any sensible answer that will apply apply between your "frame c" and a standard inertial frame, which is why everyone has been objecting. So it's up to you to prove us wrong...
This is in response to the impressive consensus that I must provide a satisfactory set of transforms relating my Frame c (moving at lightspeed) to standard inertial reference frames. These began at post #36 with starthaus. I think it’s obvious that I will not be forthcoming with these any time soon. Perhaps it would be worth the effort, but some of you are quite certain the task would be futile.

I hope it is safe to assume, since you are active in the Relativity forums, that you all believe that the speed of light is absolute, that time “really” dilates, that length “really” contracts and that simultaneity is relative.

Any thinking time dilation to be an illusion should have been convinced by the change in time captured between a still and a previously synchronized Cs clock returning from a round trip to other frames. Being covariant with velocity, length contraction is equally real, but to date there has been no direct way to capture that. A game of tag (between electron and positron) could fix that, as long as length contraction is real, all the way down to zero.

Thus, my OP suggesting photons are, though useful, superfluous to a model of remote contact through pinholes (photo-induced wormholes) mediated by path contraction to zero. The pushback was loud and clear: Path contraction does not go to zero because Frame c is not a relativistic inertial reference frame (RIRF). Specifically, Frame c is disallowed because photons can never be “at rest”. I solved that. Frame c has uniform motion and all light travels at speed c, even when distance is zero.

Now, I am “burdened” with another task. Why? I am of the impression all Frames<c in uniform motion and with c=c’ are accepted as RIRFs. And a great accomplishment of SR is that it gives us that the laws of physics (including electricity and magnetism) are the same in all RIRFs.

But here’s the kicker. Suppose I take a year, become adept at these transforms, run into your "unsolvable" problem and in a flash of brilliance fix it? I then come back here and, by golly, you’re all impressed! Great, right? Then someone does the first spectral analysis of antihydrogen and there’s no spooky annihilation at a distance (illustration post #34). What's been accomplished? Nothing! No pinholes! I’m WRONG anyway!

Alternatively, I wait till that experiment is done. And son of a gun, they get all kinds of unexpected antihydrogen instability. A lot like Mills & Cassidy had with positronium (see post #16). Then someone finds matching gamma emissions from the antihydrogen and from its remote illumination source. Pretty soon, folks like you (who are far more capable anyway) are busy fixing the transforms lickety-split. That’s more likely the way it’s going to work out.

Meanwhile, l’=ct’ is about my speed. A nice linear equation with slope c in every frame, even the limit as l’ goes to zero. With or without transforms, pinholes offer simplification and potential answers to many of the outstanding problems in physics today.
 
Last edited:
  • #57
Faradave said:
This is in response to the impressive consensus that I must provide a satisfactory set of transforms relating my Frame c (moving at lightspeed) to standard inertial reference frames. These began at post #36 with starthaus. I think it’s obvious that I will not be forthcoming with these any time soon. Perhaps it would be worth the effort, but some of you are quite certain the task would be futile.

I hope it is safe to assume, since you are active in the Relativity forums, that you all believe that the speed of light is absolute, that time “really” dilates, that length “really” contracts and that simultaneity is relative.

Any thinking time dilation to be an illusion should have been convinced by the change in time captured between a still and a previously synchronized Cs clock returning from a round trip to other frames. Being covariant with velocity, length contraction is equally real, but to date there has been no direct way to capture that. A game of tag (between electron and positron) could fix that, as long as length contraction is real, all the way down to zero.

Thus, my OP suggesting photons are, though useful, superfluous to a model of remote contact through pinholes (photo-induced wormholes) mediated by path contraction to zero. The pushback was loud and clear: Path contraction does not go to zero because Frame c is not a relativistic inertial reference frame (RIRF). Specifically, Frame c is disallowed because photons can never be “at rest”. I solved that. Frame c has uniform motion and all light travels at speed c, even when distance is zero.

Now, I am “burdened” with another task. Why? I am of the impression all Frames<c in uniform motion and with c=c’ are accepted as RIRFs. And a great accomplishment of SR is that it gives us that the laws of physics (including electricity and magnetism) are the same in all RIRFs.

But here’s the kicker. Suppose I take a year, become adept at these transforms, run into your "unsolvable" problem and in a flash of brilliance fix it? I then come back here and, by golly, you’re all impressed! Great, right? Then someone does the first spectral analysis of antihydrogen and there’s no spooky annihilation at a distance (illustration post #34). What's been accomplished? Nothing! No pinholes! I’m WRONG anyway!

Alternatively, I wait till that experiment is done. And son of a gun, they get all kinds of unexpected antihydrogen instability. A lot like Mills & Cassidy had with positronium (see post #16). Then someone finds matching gamma emissions from the antihydrogen and from its remote illumination source. Pretty soon, folks like you (who are far more adept anyway) are busy fixing the transforms lickety-split. That’s more likely the way it’s going to work out.

Meanwhile, l’=ct’ is about my speed. A nice linear equation with slope c in every frame, even the limit as l’ goes to zero. With or without transforms, pinholes offer simplification and potential answers to many of the outstanding problems in physics today.

This is simple, provide the derivations, and if you can't admit that and go away, the "golly" possibility is your own fantasy, not reality.
 
  • #58
Faradave said:
Now, I am “burdened” with another task. Why?
Because this is how science is done, particularly revolutionary science. Take a look at Einstein for example, even he was not allowed to simply have a flash of physical insight and then leave the detailed work to others, he had to go through the derivations and the detailed math and lay it out for the scientific community to judge. Do you somehow think that you are more of a genius than Einstein? That you should be given a "pass" where he was not due to the sheer granduer of your ideas?

Faradave said:
But here’s the kicker. Suppose I take a year, become adept at these transforms, run into your "unsolvable" problem and in a flash of brilliance fix it? I then come back here and, by golly, you’re all impressed! Great, right? Then someone does the first spectral analysis of antihydrogen and there’s no spooky annihilation at a distance (illustration post #34). What's been accomplished? Nothing! No pinholes! I’m WRONG anyway!
Again, that is science! I had a friend in grad school who spent not just one year but several years on his dissertation research and at the end his conclusion was that his initial idea was wrong. Negative results in science are important too.

You seem to think that you can change the world without effort and that your big picture is the only important thing and the details can be ignored. You seem to think that your idea is so compelling that you should not have to do any work and that the successful outcome of any attempt should be guaranteed. Sorry, that is simply not science, it is a lot of tedious work without any guarantee that nature will conform to your beautiful vision. If you can't be bothered to put in the scientific effort for your own idea then why should anyone else do it?
 
  • #59
Faradave said:
Suppose I take a year, become adept at these transforms,

That would be a better use of your time than spending time to post fringe stuff.

run into your "unsolvable" problem and in a flash of brilliance fix it?

Not a chance.


I then come back here and, by golly, you’re all impressed! Great, right? Then someone does the first spectral analysis of antihydrogen and there’s no spooky annihilation at a distance (illustration post #34). What's been accomplished? Nothing! No pinholes! I’m WRONG anyway!

You have been wrong all along.


Meanwhile, l’=ct’ is about my speed.

So far, despite grandiose claims, you demonstrated that you don't know basic stuff.
 
  • #60
nismaratwork said:
Yeah, I meant to say that. So there!
After three times, you should realize, mere heckling doesn’t help. Your parroting is Bohr-ing, in view of the fact that Einstein would have gladly sacrificed his photons for quantum non-local connections (such as pinholes). It was clear from, “I think it’s obvious that I will not be forthcoming with these” that I am a Faradave, without a McSwell to help with the math (Any volunteers?) It did not stop Faraday from making his contributions.

If you want to help, give me a symptom. With Frame c a relativistic inertial reference frame (RIRF), what physical problem arises from your lack of satisfactory transforms? Or, you can just wait with me for the spectral analysis of antihydrogen. What I offer you is a chance to get a head start on fixing the transforms yourself.
Actually, we know that there is no such thing.
Ha! That’s what they said about those nagging infinities in QED (such as charge on a proton) just before they came up with “renormalization”! Or you’ll invent a word like “duality” to sweep your problem under. But believe me, if spooky annihilation at a distance occurs, you will think of something, because observation must always trump theory.
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 27 ·
Replies
27
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
3
Views
1K
  • · Replies 73 ·
3
Replies
73
Views
15K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K