Changes in Mechanical Energy for non-conservative Forces Problem

AI Thread Summary
The discussion revolves around calculating the speed of a projectile from a toy cannon using a spring mechanism, with a focus on the effects of non-conservative forces like friction. The user struggles to derive the correct speed of the projectile, initially arriving at 0.506 m/s instead of the expected 1.40 m/s. Key equations involving changes in kinetic and potential energy are utilized, but confusion arises in applying the correct values for spring compression and friction work. The user seeks clarification on the calculations and the correct interpretation of the variables involved. Ultimately, the thread highlights the complexities of energy conservation in systems with friction.
RB_Physics
Messages
2
Reaction score
0
A toy cannon uses a spring to project a 5.30 g soft rubber ball. THe spring is originally compressed by 5.00 cm and has a force constant of 8 N/m. When the cannon is fired, the ball moves 15.0 cm through the horizontal barrel of the cannon and the barrel exerts a constant friction force of .032 N on the ball.

(a) With what speed does the projectile leave the barrel of the cannon?
(b) At what point does the ball have maximum speed?
(c) What is this maximum speed?

2. Homework Equations
d = delta/change in

dK - dPE (due to gravity) - dPE (due to spring) = Wf

.5m(Vf)^2 - .5m(Vi)^2 + mgh - mghi + .5k(xf)^2 - .5k(xi)^2 = -fd

(assuming that the only one i need?)

3. The Attempt at a Solution

I've tried going over this a couple of times and have no idea how to get the answer to (a) which is 1.40 m/s. Since there's no PE due to gravity since its all in the horizontal, i can eliminate dPEg, and since it starts at rest i can eliminate Ki. I think i can also get rid of the final x position of the spring since after the cannon fires the spring returns to its unstretched position? which would leave me with:

.5m(Vf)^2 - .5k(xi)^2 = -fd

I'm assuming with it being compressed and having xf being 0, that xi = -.05 m and since it travels .15 m, that d = .1 m, not .15 m. since you're given everything else when you rearrange it to isolate Vf you get:

Vf = sqrt[((k(xi)^2) - (2fd)) / m]

but when i do this i get Vf = .505 m/s.

I've gone over it and looked through the book again and again but i have to be missing something. Any help would be appreciated as I have a midterm on the material tomorrow morning. Also, my first post so if its difficult to read I apologize. Thanks.
 
Physics news on Phys.org
When I plug in the numbers to the formula you gave, I get 1.40 m/s
 
Vf = sqrt[((k(xi)^2) - (2fd)) / m]

I don't know how but I keep getting .506 m/s...

k*(xi)^2 = .02

2*f*d = .0064

.02 - .0064 = .0136

.0136 / .053 kg = .257

sqrt(.257) = .506 m/s...

You say you're getting 1.40 m/s but you can't with that formula, I've checked and my calculator is in degrees so that's not the problem... I don't know what's up with it. Help??
 
RB_Physics said:
2*f*d = .0064

2*.032N*15cm = .0096 J

and 5.3g = .0053kg
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top