Petar Mali
- 283
- 0
\delta(x)=\frac{d}{dx}\Theta(x) - delta function like a first derivative of Heaviside step function
\Theta(x)=\int dx\delta(x)
We use integral representation of delta function
\delta(x)=\frac{1}{2\pi}\int^{\infty}_{-\infty}dke^{-ikx}
from that we get
\Theta(x)=\int dx\frac{1}{2\pi}\int^{\infty}_{-\infty}dke^{-ikx}
And now we use one trick!
\Theta(x)=\int dx\frac{1}{2\pi}\int^{\infty}_{-\infty}dke^{-ikx}lim_{\epsilon \rightarrow 0^+}e^{\epsilon k}
Consider now the expression without the limit
\frac{1}{2\pi}\int^{\infty}_{-\infty}dk\int dxe^{-i(k+i\epsilon)x}=\frac{i}{2\pi}\int^{\infty}_{-\infty}dk\frac{e^{-ikx}}{k+i\epsilon}
we get that
\Theta(x)=\frac{i}{2\pi} lim_{\epsilon \rightarrow 0+}\int^{\infty}_{-\infty}dk\frac{e^{-ikx}}{k+i\epsilon}
Using complex integration in lower half plane for x>0 and upper half plane for x<0 we get that the upper expression is correct. But why we can change the place of limit and integral? I'm not sure.
Thanks for your answer!
\Theta(x)=\int dx\delta(x)
We use integral representation of delta function
\delta(x)=\frac{1}{2\pi}\int^{\infty}_{-\infty}dke^{-ikx}
from that we get
\Theta(x)=\int dx\frac{1}{2\pi}\int^{\infty}_{-\infty}dke^{-ikx}
And now we use one trick!
\Theta(x)=\int dx\frac{1}{2\pi}\int^{\infty}_{-\infty}dke^{-ikx}lim_{\epsilon \rightarrow 0^+}e^{\epsilon k}
Consider now the expression without the limit
\frac{1}{2\pi}\int^{\infty}_{-\infty}dk\int dxe^{-i(k+i\epsilon)x}=\frac{i}{2\pi}\int^{\infty}_{-\infty}dk\frac{e^{-ikx}}{k+i\epsilon}
we get that
\Theta(x)=\frac{i}{2\pi} lim_{\epsilon \rightarrow 0+}\int^{\infty}_{-\infty}dk\frac{e^{-ikx}}{k+i\epsilon}
Using complex integration in lower half plane for x>0 and upper half plane for x<0 we get that the upper expression is correct. But why we can change the place of limit and integral? I'm not sure.
Thanks for your answer!