Changing Units From Joules to Mega electron Volts

AI Thread Summary
Converting between Joules and Mega electron Volts (MeV) can be confusing, but the key is knowing the conversion factor. One Mega electron Volt equals 1 million electron Volts, which is equivalent to 1.6 x 10^-13 Joules. To convert from Joules to MeV, divide the energy in Joules by 1.6 x 10^-13, and to convert from MeV to Joules, multiply by this same factor. Understanding these relationships simplifies the conversion process significantly. Mastering these conversions is essential for solving physics problems involving energy units.
majormuss
Messages
124
Reaction score
4

Homework Statement



I always have problems when changing units form Joule form to Megaelectron Volts and vice versa...whats the easiest way to find them?

Homework Equations





The Attempt at a Solution


I always get confused at the conversion part.
 
Physics news on Phys.org
majormuss said:

Homework Statement



I always have problems when changing units form Joule form to Megaelectron Volts and vice versa...whats the easiest way to find them?
1 MeV = 106eV = 1.6*10-19*106 Joules
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top