Characteristics Equation for Solving Recurrences

  • Thread starter Thread starter needhelp83
  • Start date Start date
needhelp83
Messages
193
Reaction score
0
Solve the following recurrences using the characteristics equation
T(n) = 4T(n-1) – 3T(n-2)
T(1) = 1
T(2) = 2

T(n) – 4T(n-1) + 3T (n-2) = 0
r^n r^n-1 r^n-2

r^n – 4r^n-1 + 3r^n-2= 0
r^n-2 (r^2 -4r + 3) = 0

r = 3, r= 1
T(n) = C1 3n + C2 1n

For T(1) =1
C1 3^1 + C2 1^1 = 1

For T(2)=2
C1 3^2 + C2 1^2 = 2
9C1 + C2 = 2

Solving C1
C2 = 1 - 3C1
9C1 + (1 - 3C1 ) = 2
6C1 + 1 = 2
C1 = 1/6

Solving for C2
3*(1/6) + C2 = 1
(½) + C2 = 1
C2 = ½

for T(2) = 2
C1 3^2 + C2 1^2 = 1 for T(2) = 2

Therefore: T(n) = (1/6) 3n + (½) 1n

Did I do this correctly?
 
Physics news on Phys.org
So from your work, T(n) = n (= 3/6*n + n/2).

Check for yourself. Does your nonrecursive formula give you the same values as your recursive formula? If so, then it looks like you did the problem correctly.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top