Charge-Conjugation property

BobaJ
Messages
38
Reaction score
0
Homework Statement
I have to show, the last equality in the charge-conjugation property of the current $$C\bar{\Psi}_a\gamma^{\mu}\Psi_bC^{-1}=\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-(\bar{\Psi}_a\gamma^{\mu}\Psi_b)^\dagger$$
Relevant Equations
##\bar{\Psi}^c=-\Psi^TC^{-1}##

##\Psi^c=C\bar{\Psi}^T##

##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}##

##C=-C^{-1}=-C^\dagger=-C^T##

And I have to use that the fermionic quantum fields ##\Psi_a## and ##\Psi_b## anticommute.
I'm probably just complicating things, but I'm a little bit stuck with this problem.

I started with just plugging in the definitions for ##\bar{\Psi}_a^c## and ##\Psi_b^c##. So I get

$$\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-\Psi_a^TC^{-1}\gamma^{\mu}C\bar{\Psi}_b^T$$.

After this I used ##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}## to get:

$$=\Psi-a^T\gamma^{\mu T}\bar{\Psi}_b^T$$.

Is this the right way? How do I go onto show the equality? Thank you for your help.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top