Gaussian97 said:
I will hide the message inside spoiler to avoid a super large message:
Ok, first, for the ##\bar{\psi}_{L,R}\not{\!\partial} \psi_{R,L}##
My mistake was not recalling that ##\not{\!\partial}## is a ##4 \times 4## matrix. Thus I now get
$$\bar{\psi_{L,R}}\not{\!\partial} \psi_{R,L}=\psi^\dagger_{L,R}\gamma^0 \not{\!\partial} \psi_{R,L}=\frac 1 4 \psi^{\dagger}(1 \mp \gamma^5)\gamma^0\not{\!\partial}(1\pm \gamma^5)\psi=\frac 1 4 \psi^{\dagger} \gamma^0 \not{\!\partial}\psi - \frac 1 4 \psi^{\dagger} \gamma^5 \gamma^0 \not{\!\partial}\gamma^5 \psi \pm \frac 1 4 \psi^\dagger \gamma^0 \not{\!\partial}\gamma^5 \psi \mp \frac 1 4 \psi^\dagger \gamma^5 \gamma^0 \not{\!\partial}\psi=0$$
As suggested, let's split the proof in two:
1) Show that ##\frac 1 4 \psi^{\dagger} \gamma^0 \not{\!\partial}\psi - \frac 1 4 \psi^{\dagger} \gamma^5 \gamma^0 \not{\!\partial}\gamma^5 \psi=0##
The key here is to show that (note that I assume that ##\partial_{\mu}## acts on ##\psi## and not on ##\gamma^5##)
$$\gamma^0\gamma^{\mu} - \gamma^5\gamma^0\gamma^{\mu}\gamma^5=0$$
You seem to suggest we should be able to show it based on the anticommutation relation ##[\gamma^{\mu}, \gamma^5]_+ =0##
I've been trying different combinations (multiplying different matrices right/left on the above equation)
but got nothing... the sign difference spoils any attempt to apply the anticommutation relation...
Could you please give me a hint on how to prove ##\gamma^0\gamma^{\mu} - \gamma^5\gamma^0\gamma^{\mu}\gamma^5=0##
2) Show that ##\pm \frac 1 4 \psi^\dagger \gamma^0 \not{\!\partial}\gamma^5 \psi \mp \frac 1 4 \psi^\dagger \gamma^5 \gamma^0 \not{\!\partial}\psi=0##
The key here is to show that (note that I assume that ##\partial_{\mu}## acts on ##\psi## and not on ##\gamma^5##)
$$\pm\gamma^0\gamma^{\mu}\gamma^5 \mp \gamma^5\gamma^0\gamma^{\mu}=0$$
Here I have the same issue; Could you please give me a hint on how to prove ##\pm\gamma^0\gamma^{\mu}\gamma^5 \mp \gamma^5\gamma^0\gamma^{\mu}=0##
Gaussian97 said:
Then the comments about part d)
Ahhhh I
almost have this one (I am having so much fun with this one btw!

)
OK let me correct matrix-commutation mistakes (note that I assume that ##\partial_{\mu}## acts on ##\psi## and not on ##e^{i \alpha \gamma_5}##)
$$\mathscr{L} = \psi^{\dagger} e^{-i \alpha \gamma_5} \gamma^{0} (i\not{\!\partial} - m)e^{i \alpha \gamma_5} \psi = i\psi^{\dagger}e^{-i \alpha \gamma_5} \gamma^{0} \gamma^{\mu}e^{i \alpha \gamma_5}\partial_{\mu}\psi - m \psi^{\dagger}e^{-i \alpha \gamma_5} \gamma^{0} e^{i \alpha \gamma_5} \psi$$
Let me first show invariance of the Lagrangian at the limit ##m=0##
We have to show that
$$i\psi^{\dagger}e^{-i \alpha \gamma_5} \gamma^{0} \gamma^{\mu}e^{i \alpha \gamma_5}\partial_{\mu}\psi=i\psi^{\dagger}\gamma^0\gamma^{\mu}\partial_{\mu}\psi$$
Applying series expansion of the exponential function up to first order we get
$$ i\psi^{\dagger} (1-i \alpha \gamma^5) \gamma^{0} \gamma^{\mu} (1+i \alpha \gamma^5) \partial_{\mu}\psi=i\psi^{\dagger}\gamma^{0} \gamma^{\mu}\partial_{\mu}\psi+i\alpha^2\psi^{\dagger}\gamma^5\gamma^0\gamma^{\mu}\gamma^5\partial_{\mu}\psi-\alpha\psi^{\dagger}\gamma^0\gamma^{\mu}\gamma^5\partial_{\mu}\psi+\alpha\psi^{\dagger}\gamma^5\gamma^0\gamma^{\mu}\partial_{\mu}\psi$$
I know that
$$-\alpha\psi^{\dagger}\gamma^0\gamma^{\mu}\gamma^5\partial_{\mu}\psi+\alpha\psi^{\dagger}\gamma^5\gamma^0\gamma^{\mu}\partial_{\mu}\psi=0$$
Due to the fact that ##\gamma^0\gamma^{\mu}\gamma^5 + \gamma^5\gamma^0\gamma^{\mu}=0##. I know that this can be proven via ##[\gamma^{\mu}, \gamma^5]_+=0## but honestly, I do not know how to prove it (same issue than before; could you please give a hint on how to do so?).
The second term is dropped out as it is of second order. Thus we end up with ##i\psi^{\dagger}\gamma^{0} \gamma^{\mu}\partial_{\mu}\psi##, as expected.
Let's now show that the lagrangian is not invariant when ##m \neq 0##
We want to show that
$$i\psi^{\dagger}e^{-i \alpha \gamma_5} \gamma^{0} \gamma^{\mu}e^{i \alpha \gamma_5}\partial_{\mu}\psi - m\psi^{\dagger}e^{-i \alpha \gamma_5}\gamma^0 e^{i \alpha \gamma_5} \psi \neq i\psi^{\dagger} \gamma^{0} \not{\!\partial}\psi - m \psi^{\dagger} \gamma^0 \psi$$
Applying series expansion of the exponential function up to first order we get (note that the term that does not have the mass factor is exactly the same that the one we got above; thus I'll not work it out again)
$$i\psi^{\dagger}e^{-i \alpha \gamma_5} \gamma^{0} \gamma^{\mu}e^{i \alpha \gamma_5}\partial_{\mu}\psi - m\psi^{\dagger}e^{-i \alpha \gamma_5}\gamma^0 e^{i \alpha \gamma_5} \psi = i\psi^{\dagger}\gamma^{0} \gamma^{\mu}\partial_{\mu}\psi - m\psi^{\dagger}(1-i \alpha \gamma_5)\gamma^0 (1+i \alpha \gamma_5) \psi= i\psi^{\dagger}\gamma^{0} \gamma^{\mu}\partial_{\mu}\psi - m\psi^{\dagger}\gamma^0\psi-m\alpha^2\psi^{\dagger}\gamma^5\gamma^0\gamma^5\psi-im\psi^{\dagger}\gamma^0\gamma^5\psi+im\alpha\psi^{\dagger}\gamma^5\gamma^0\psi$$
The key on why the lagrangian is not invariant is that
$$-im\psi^{\dagger}\gamma^0\gamma^5\psi+im\alpha\psi^{\dagger}\gamma^5\gamma^0\psi \neq 0$$
This is because ##-\gamma^0\gamma^5 +\gamma^5\gamma^0 \neq 0## due to the fact that ##[\gamma^0, \gamma^5] \neq 0##
WoW I am learning a lot! Thanks Gaussian97
