mfig
- 283
- 99
Hello,
I found this problem while preparing for the qualifying exams and thought I would tackle it. I have no idea if it is correct, but I would like someone to tell me if there is an easier way to solve this than I used. Perhaps some Lagrangian or Hamiltonian approach? Thanks.
The situation is as follows. A solid disk of radius R and mass M_{w} is resting on its edge on a horizontal plane surface near a rigid vertical pole. Free to slide frictionlessly on the pole is a collar of mass M_{c}. Connecting the collar to a frictionless pin at the center of the disk is a thin beam of length L and mass M_{b}. The angle between the beam and the plane is \theta_{0}. Assuming the system is released, find an expression for the velocity of the collar when the angle is θ.
To solve this I used conservation of mechanical energy.
The initial energy is all potential, and the energy at θ (once the system is released) is a mixture of kinetic and potential.
E_{{{\it before}}} = E_{{{\it pot.} {\it\space collar \space initial}}}+E_{{{\it pot.} {<br /> \it beam \space initial}}}
E_{{{\it pot.}{\it \space collar \space initial}}}=M_{{c}}\cdot g \cdot L\cdot \sin \left( <br /> \theta_{{0}} \right)
E_{{{\it pot.} {\it beam \space initial}}}=\frac{M_{{b}}\cdot g \cdot L\cdot \sin<br /> \left( \theta_{{0}} \right)}{2}<br />
Now we find the energies of the components when the system is released.
E_{{{\it kin.} {\it \space wheel}}}=\frac{{\it I}_{{{\it \space wheel}}}\cdot{\space <br /> {\omega}^{2}_{{{\it wheel}}}}}{2}+\frac{M_{{w}}\cdot{{V}^{2}_{{c. m. {\it \space wheel}<br /> }}}}{2}<br />
\omega_{{{\it wheel}}}={\frac {V_{{c. m. {\it \space wheel}}}}{R}}
{\it I}_{{{\it wheel}}}=\frac{M_{{w}}\cdot{R}^{2}}{2}
V_{{c. m. {\it \space wheel}}}={\frac {V_{{c}}}{\tan \left( \theta<br /> \right) }}<br />
E_{{{\it kin.} {\it \space collar}}}=\frac{M_{{c}}{V_{{c}}}^{2}}{2}
E_{{{\it pot.} {\it \space collar}}}=M_{{c}}\cdot g \cdot L\sin \left( \theta \right)
E_{{{\it kin.}{\it \space beam}}}=\frac{{\it I}_{{c. m. {\it <br /> \space beam}}}\cdot {{\omega}^{2}_{{{\it beam}}}}}{2} +\frac{M_{{b}}\cdot {{V}^{2}_{{c\cdot m\cdot {<br /> \it beam}}}}<br /> }{2}
E_{{{\it pot.} {\it \space beam}}}=\frac{M_{{b}}\cdot g \cdot L\cdot \sin \left( \theta<br /> \right)}{2}<br />
{\it I}_{{c. m. {\it \space beam}}}=\frac{M_{{b}}{L}^{2}}{12}
\omega_{{{\it beam}}}={\frac {2\cdot V_{{c}}\cdot \cos \left( \theta \right) }{L<br /> }}<br />
V_{{c. m.{\it \space beam}}}=\frac{V_{{c}}}{2}\cdot \sqrt {1+ \frac{1}{\left( {\tan}^{2}<br /> \left( \theta \right) \right) }}<br />
So putting this all together, we get an expression for the total energy of the system after release.
E_{{{\it after}}}=E_{{{\it kin.}{\it \space wheel}}}+E_{{{\it kin.} <br /> {\it \space collar}}}+E_{{{\it pot.} {\it \space collar}}}+E_{{{\it kin.} {<br /> \it \space beam}}}+E_{{{\it pot.}{\it \space beam}}}<br />
Equating this with the initial energy, and solving for V_{c} yields:
V_{c} = \sqrt { \frac{M_{{c}}\cdot g\cdot L\cdot \left( \sin \left( \beta \right) - \sin \left( \theta \right) \right)+\frac{M_{{b}}\cdot g\cdot L\cdot \left(\sin<br /> \left( \beta \right) - \sin<br /> \left( \theta \right) \right)}{2}}{{\frac {3\cdot M_{{w}}}{4\cdot<br /> {\tan} ^{2} \left( \theta \right)}}+\frac{M_{{c}}}{2}+\frac{M<br /> _{{b}}\cdot {\cos} ^{2} \left( \theta \right) }{6}+\frac{M_{{b}}<br /> \cdot \left( 1+ \frac{1}{{\tan}^{2} \left( \theta \right) } \right) <br /> }{8}}} <br />
For definiteness, I use:
M_{w} = 21
M_{c} = 33
M_{b} = 11
\theta_{0}=63°
\theta=32°
L = 3.11
And get V_{c} = 2.593
I found this problem while preparing for the qualifying exams and thought I would tackle it. I have no idea if it is correct, but I would like someone to tell me if there is an easier way to solve this than I used. Perhaps some Lagrangian or Hamiltonian approach? Thanks.
The situation is as follows. A solid disk of radius R and mass M_{w} is resting on its edge on a horizontal plane surface near a rigid vertical pole. Free to slide frictionlessly on the pole is a collar of mass M_{c}. Connecting the collar to a frictionless pin at the center of the disk is a thin beam of length L and mass M_{b}. The angle between the beam and the plane is \theta_{0}. Assuming the system is released, find an expression for the velocity of the collar when the angle is θ.
To solve this I used conservation of mechanical energy.
The initial energy is all potential, and the energy at θ (once the system is released) is a mixture of kinetic and potential.
E_{{{\it before}}} = E_{{{\it pot.} {\it\space collar \space initial}}}+E_{{{\it pot.} {<br /> \it beam \space initial}}}
E_{{{\it pot.}{\it \space collar \space initial}}}=M_{{c}}\cdot g \cdot L\cdot \sin \left( <br /> \theta_{{0}} \right)
E_{{{\it pot.} {\it beam \space initial}}}=\frac{M_{{b}}\cdot g \cdot L\cdot \sin<br /> \left( \theta_{{0}} \right)}{2}<br />
Now we find the energies of the components when the system is released.
E_{{{\it kin.} {\it \space wheel}}}=\frac{{\it I}_{{{\it \space wheel}}}\cdot{\space <br /> {\omega}^{2}_{{{\it wheel}}}}}{2}+\frac{M_{{w}}\cdot{{V}^{2}_{{c. m. {\it \space wheel}<br /> }}}}{2}<br />
\omega_{{{\it wheel}}}={\frac {V_{{c. m. {\it \space wheel}}}}{R}}
{\it I}_{{{\it wheel}}}=\frac{M_{{w}}\cdot{R}^{2}}{2}
V_{{c. m. {\it \space wheel}}}={\frac {V_{{c}}}{\tan \left( \theta<br /> \right) }}<br />
E_{{{\it kin.} {\it \space collar}}}=\frac{M_{{c}}{V_{{c}}}^{2}}{2}
E_{{{\it pot.} {\it \space collar}}}=M_{{c}}\cdot g \cdot L\sin \left( \theta \right)
E_{{{\it kin.}{\it \space beam}}}=\frac{{\it I}_{{c. m. {\it <br /> \space beam}}}\cdot {{\omega}^{2}_{{{\it beam}}}}}{2} +\frac{M_{{b}}\cdot {{V}^{2}_{{c\cdot m\cdot {<br /> \it beam}}}}<br /> }{2}
E_{{{\it pot.} {\it \space beam}}}=\frac{M_{{b}}\cdot g \cdot L\cdot \sin \left( \theta<br /> \right)}{2}<br />
{\it I}_{{c. m. {\it \space beam}}}=\frac{M_{{b}}{L}^{2}}{12}
\omega_{{{\it beam}}}={\frac {2\cdot V_{{c}}\cdot \cos \left( \theta \right) }{L<br /> }}<br />
V_{{c. m.{\it \space beam}}}=\frac{V_{{c}}}{2}\cdot \sqrt {1+ \frac{1}{\left( {\tan}^{2}<br /> \left( \theta \right) \right) }}<br />
So putting this all together, we get an expression for the total energy of the system after release.
E_{{{\it after}}}=E_{{{\it kin.}{\it \space wheel}}}+E_{{{\it kin.} <br /> {\it \space collar}}}+E_{{{\it pot.} {\it \space collar}}}+E_{{{\it kin.} {<br /> \it \space beam}}}+E_{{{\it pot.}{\it \space beam}}}<br />
Equating this with the initial energy, and solving for V_{c} yields:
V_{c} = \sqrt { \frac{M_{{c}}\cdot g\cdot L\cdot \left( \sin \left( \beta \right) - \sin \left( \theta \right) \right)+\frac{M_{{b}}\cdot g\cdot L\cdot \left(\sin<br /> \left( \beta \right) - \sin<br /> \left( \theta \right) \right)}{2}}{{\frac {3\cdot M_{{w}}}{4\cdot<br /> {\tan} ^{2} \left( \theta \right)}}+\frac{M_{{c}}}{2}+\frac{M<br /> _{{b}}\cdot {\cos} ^{2} \left( \theta \right) }{6}+\frac{M_{{b}}<br /> \cdot \left( 1+ \frac{1}{{\tan}^{2} \left( \theta \right) } \right) <br /> }{8}}} <br />
For definiteness, I use:
M_{w} = 21
M_{c} = 33
M_{b} = 11
\theta_{0}=63°
\theta=32°
L = 3.11
And get V_{c} = 2.593
Last edited: