tandoorichicken
- 245
- 0
check work please on linear transformation problem
The problem is to find a standard matrix of T.
T:\mathbb{R}^3\rightarrow\mathbb{R}^2, T(\vec{e}_1) = (1,3), T(\vec{e}_2) = (4,-7), T(\vec{e}_3) = (-5,4)
where e_1, e_2, and e_3 are the columns of the 3x3 identity matrix.
So here's what I did:
Find A for T(\vec{x})=A\vec{x}
\vec{x}=I_3\vec{x}=\left[ \vec{e}_1 \; \vec{e}_2 \; \vec{e}_3 \right] \vec{x} = x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3
T(\vec{x}) = T(x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3) = x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2) + x_3 T(\vec{e}_3)
\left[ T(\vec{e}_1) \; T(\vec{e}_2) \; T(\vec{e}_3)\right]\vec{x} = A\vec{x}
A = \left[ T(\vec{e}_1) \; T(\vec{e}_2) \; T(\vec{e}_3)\right] =
(well basically i screwed up teh tex for this but its a 2x3 matrix with top row 1,4,-5 and bottom row 3,-7,4)
Note: a lot of this might be unnecessary, but my main goal is that I want to be sure that I am understanding this correctly.
The problem is to find a standard matrix of T.
T:\mathbb{R}^3\rightarrow\mathbb{R}^2, T(\vec{e}_1) = (1,3), T(\vec{e}_2) = (4,-7), T(\vec{e}_3) = (-5,4)
where e_1, e_2, and e_3 are the columns of the 3x3 identity matrix.
So here's what I did:
Find A for T(\vec{x})=A\vec{x}
\vec{x}=I_3\vec{x}=\left[ \vec{e}_1 \; \vec{e}_2 \; \vec{e}_3 \right] \vec{x} = x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3
T(\vec{x}) = T(x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3) = x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2) + x_3 T(\vec{e}_3)
\left[ T(\vec{e}_1) \; T(\vec{e}_2) \; T(\vec{e}_3)\right]\vec{x} = A\vec{x}
A = \left[ T(\vec{e}_1) \; T(\vec{e}_2) \; T(\vec{e}_3)\right] =
(well basically i screwed up teh tex for this but its a 2x3 matrix with top row 1,4,-5 and bottom row 3,-7,4)
Note: a lot of this might be unnecessary, but my main goal is that I want to be sure that I am understanding this correctly.
Last edited: