Checking my work - Displacement

  • Thread starter Thread starter kristy_vincen
  • Start date Start date
  • Tags Tags
    Displacement Work
AI Thread Summary
The total displacement of the boat is calculated by considering its final position relative to the starting point. After traveling 100 km north and then 40 km north, the boat is 140 km north. It then travels 80 km south, resulting in a final position of 60 km north of the starting point. Thus, the correct displacement is 60 km north. This calculation clarifies the distinction between distance traveled and displacement, which includes direction.
kristy_vincen
Messages
3
Reaction score
0
A boat which travels 100km[N], then 40km[N], and finally 80km . The entire trip takes 6.5 hours.
Calculate the total displacement of the boat

d = d2-d1
d = (-80) - 140
d = -220
d = 220km

Just want to make sure this is correct.

Thanks
 
Physics news on Phys.org
kristy_vincen said:
A boat which travels 100km[N], then 40km[N], and finally 80km . The entire trip takes 6.5 hours.
Calculate the total displacement of the boat

d = d2-d1
d = (-80) - 140
d = -220
d = 220km

Just want to make sure this is correct.

Thanks
Well, no, you are calculating the distance the boat travels (which has magnitude only, a scalar quantity), not the displacement (which is a vector quantity with magnitude and direction).
The boat travels 140 km north, then does a 180 degree turn and heads back traveling 80 km south. Where does it end up? (Draw a sketch). And welcome to PF! :smile:
 
Okay, so, I'm looking for the distance between the start and the finish.

d = d2-d1
d = 140 - 80
d = 60km [N]

Please tell me that's correct!
 
Yes, the displacement is 60 km [N].:approve:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top