- 6,221
- 31
Homework Statement
Find an equation connecting x and y for which (z-1)/(z+1) has an argument \alpha
Homework Equations
z=x+iy
arg(z)=tan-1(y/x)
The Attempt at a Solution
\frac{z-1}{z+1}
Substituting z=x+iy
\Rightarrow \frac{z-1}{z+1}=\frac{(x-1)+iy}{(x+1)+iy}
Realizing
\frac{(x+1)(x-1)+iy(x+1)-iy(x-1)-i^2y^2}{(x+1)^2+y^2}
Re:i2=-1
= \frac{x^2+y^2-1}{(x+1)^2+y^2} +i \frac{2y}{(x+1)^2+y^2}
Thus
tan\alpha = \frac{2y}{x^2+y^2-1}
Is this correct? Or should I just put in the form of a circle?