Chemistry Help - Magnesium Carbonate decomposition

AI Thread Summary
The discussion focuses on the decomposition of magnesium carbonate, with a sample of 3.96g producing 1.89g of magnesium oxide. The calculations confirm that 1.14g of magnesium is contained in the original sample, and 2.07g of carbon dioxide is released. Participants verify the solution using both mass ratios and mole calculations, illustrating the relationship between magnesium, magnesium oxide, and carbon dioxide. The method of determining the moles of CO2 released by calculating moles of magnesium carbonate is also discussed. The overall consensus is that the calculations and reasoning presented are correct.
max1205
Messages
14
Reaction score
0
Hey everyone,

I have a homework question that I would appreciate some clarification on.

Question:

A 3.96g sample of magnesium carbonate decomposed to produce 1.89g of magnesium oxide. What mass of magnesium was in the sample of magnesium carbonate? Calculate the mass percent of of magnesium, by mass, in the magnesium oxide produced. How much CO2 (carbon dioxide) was released into the atmosphere?

Solution:

In an example in the textbook it states that there is 0.301g of magnesium in 0.500g of magnesium oxide. Using this information,


since MgCO3 --------(arrow) MgO + CO2

1.89g magnesium oxide X 0.301g magnesium/0.500 magnesium oxide
= 1.14g of magnesium in 1.89g magnesium oxide

therefore, there is 1.14g of magnesium in 3.96g of magnesium carbonate.

and, 3.96g magnesium carbonate - 1.89g magnesium oxide = 2.07g Carbon dioxide released into atmosphere.

Can anyone please verify if my solution is correct, please?
 
Physics news on Phys.org
The solutions are correct. One used the ratio of Mg/MgO correctly. And certainly the difference in mass between MgCO3 and MgO must be the CO2.


Another way to look at this is determine how much Mg is in the CO2 by mass using the atomic masses.

In mole of MgCO3, one would have 1 mole of Mg, 1 mole of C, and 3 moles of O. Mass wise, one would have 24.3 g of Mg, 12 g of C and 48 g (3 x 16 g) of O, which gives a mass of one mole of MgCO3 as 84.3 grams. That gives a ratio of 24.3 g Mg/84.3 g MgCO3 = 0.288 g Mg/ g MgCO3.

3.96 g * 0.288 = 1.14 g, which is the answer one obtained.

As for CO2, one found the mass but difference between masses of MgCO3 and MgO, which is correct.

However, one could also find the moles of CO2 released, by the virture the one mole of MgCO3 releases one mole of CO2.

To determine the moles of MgCO3, one simply takes the mass 3.96 g (MgCO3) and divides by the mass of one mole (84.3 g/ g-mole of MgCO3). This would yield - 0.047 moles of MgCO3, which would yield 0.047 moles of CO2.
 
I didn't even think of doing it like that. Thanks Astronuc!
 
Thread 'Confusion regarding a chemical kinetics problem'
TL;DR Summary: cannot find out error in solution proposed. [![question with rate laws][1]][1] Now the rate law for the reaction (i.e reaction rate) can be written as: $$ R= k[N_2O_5] $$ my main question is, WHAT is this reaction equal to? what I mean here is, whether $$k[N_2O_5]= -d[N_2O_5]/dt$$ or is it $$k[N_2O_5]= -1/2 \frac{d}{dt} [N_2O_5] $$ ? The latter seems to be more apt, as the reaction rate must be -1/2 (disappearance rate of N2O5), which adheres to the stoichiometry of the...
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...
Back
Top