Chi-square to standard normal distribution

forget_f1
Messages
11
Reaction score
0
Hi, I have a question

If X1,X2,...,Xn are independent random variables having chi-square distribution witn v=1 and Yn=X1+X2+...+Xn, then the limiting distribution of

(Yn/n) - 1
Z= --------------- as n->infinity is the standard normal distribution.
sqrt(2/n)

I know that Yn has chi-square distribution with v=n, but how to proceed.
 
Physics news on Phys.org
Not given this much thought but ...

Now since u know Y is Chi-Square Variate with df = n
What is MGF of Y?
what is MGF of Z?
(Note : write MGF of Z in terms of MGF of Y ... i think that should be possible)
now take limit as n->oo
see if the MGF of Z is same as that of MGF of a standard normal distribution
then uniqueness theorem takes over and we are finished ...

-- AI
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top