Christoffel Symbols: Intuitive Proof for Covariant Derivative of Metric Tensor

zwoodrow
Messages
34
Reaction score
0
I am learning about christoffel symbols and there is a pretty standard representation of christoffel symbols as a linear combination of products of the metric tensor and the metric tensors derivative. However when this is derived it is always done in a hoakey manner. Something along the lines of ... do these permutations add this subtract that and walllaaa. I am trying to make a more physically intuitive proof based off the covariant derivative of the metric tensor being equal to zero. Has anyone seen this proof somewhere i haven't got it to work out and i am looking go help.
 
Physics news on Phys.org
Check out chapter 3 of Wald's GR book.
 
I think the best place to read about connections is "Riemannian manifolds: an introduction to curvature", by John Lee. But I don't remember how he did this particular thing.
 
The ordinary derivative of a tensor is NOT a tensor. In order to make it one, the "covariant derivative", you have to subtract off the Christoffel symbols- or, to put it another way, the Chrisoffel symbols are the covariant derivative minus the ordinary derivative.
 
zwoodrow said:
I am trying to make a more physically intuitive proof based off the covariant derivative of the metric tensor being equal to zero. Has anyone seen this proof somewhere i haven't got it to work out and i am looking go help.

Yes, you can find it in MTW exercise 8.15. It has an outline solution too.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Back
Top