Circle in the Complex Domain where Mean is not the Centre

electronicengi
Messages
8
Reaction score
0
Hello people of Physics Forums,

In my research into transmission lines, I have come across the following function:

x = ( a - i * b * tan(t) ) / ( c - i * d * tan(t) )

In the above equation x, a, b, c and d are complex and t is real. If my analysis is correct, varying t from -pi/2 to pi/2 will yield a circle in the complex domain that intersects the points a/c and b/d.

I would like to know more about this type of function. Has it been studied before? If so, does it have some sort of special name that I can look up in a mathematics textbook to learn more about it? In particular, I am interested in finding the "average" value of x; does a closed form solution (in terms of a, b, c and d) exist if one integrates x from t = -pi/2 to pi/2?

Thank you in advance.

electronicengi
 
Physics news on Phys.org
  • Like
Likes 1 person
Excellent. Looks like I will be doing a little bit of reading up on the Mobius transformation.

Does anyone know how to find (if possible) a closed form solution for the mean value of x?
 
electronicengi said:
Excellent. Looks like I will be doing a little bit of reading up on the Mobius transformation.

Does anyone know how to find (if possible) a closed form solution for the mean value of x?

No, but I think the following should be true:
Let ##a = T(0)##, let ##b = T(i\pi/2) + T(-i\pi/2)##. Then the mean value lies on the line through ##a## and ##b##.
 
  • Like
Likes 1 person
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...
Back
Top