Circle in the Euclidean space using Euler's Number

Click For Summary
The discussion revolves around the mathematical significance of Euler's Number, particularly in relation to the expression (1 + 1/n)^n, which approaches Euler's Number as n approaches infinity. Participants express confusion about the phrases "0 to 1 in Euclidean space" and "1 to 0 with the circle," questioning their meaning and relevance. There is a mention of the relationship between Euler's Number and the unit circle in the complex plane, specifically through the expression e^(iθ). Overall, the conversation highlights the fascinating and ubiquitous nature of Euler's Number in various mathematical contexts. Euler's Number continues to be a topic of intrigue and exploration in mathematics.
OrthoJacobian
Messages
1
Reaction score
0
0 to 1 in Euclidean space.

(1 + 1/n)^n using Euler's Number.

1 to 0 with the circle.

How amazing is Euler's Number?!
 
Mathematics news on Phys.org
OrthoJacobian said:
0 to 1 in Euclidean space.

(1 + 1/n)^n using Euler's Number.

1 to 0 with the circle.

How amazing is Euler's Number?!

What...?

But welcome to PF!
 
What do you mean by "0 to 1 in Euclidean space"? What is changing from 0 to 1?

What do you mean by "(1+ 1/n)^n using Euler's number"? Yes, the limit, as n goes to infinity is Euler's number but I would not say "with" Euler's number.

And, finally, what do you mean by "1 to 0 with the circle"? What is changing from 1 to 0 and what does that have to do with the circle?
 
I'm so confused by this post. Are you talking about how ##e^{i\theta}## is a circle in the complex plane with radius ##1##, or how the series expansion for ##(1+\frac{1}{n})^n## is ##e-\frac{e}{2n}+O(\frac{1}{n^2})##, or something else?

Regardless, e certainly is an amazing number and pops up in tons of (un)expected places.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
14K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
29
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K