Circle in the Euclidean space using Euler's Number

OrthoJacobian
Messages
1
Reaction score
0
0 to 1 in Euclidean space.

(1 + 1/n)^n using Euler's Number.

1 to 0 with the circle.

How amazing is Euler's Number?!
 
Mathematics news on Phys.org
OrthoJacobian said:
0 to 1 in Euclidean space.

(1 + 1/n)^n using Euler's Number.

1 to 0 with the circle.

How amazing is Euler's Number?!

What...?

But welcome to PF!
 
What do you mean by "0 to 1 in Euclidean space"? What is changing from 0 to 1?

What do you mean by "(1+ 1/n)^n using Euler's number"? Yes, the limit, as n goes to infinity is Euler's number but I would not say "with" Euler's number.

And, finally, what do you mean by "1 to 0 with the circle"? What is changing from 1 to 0 and what does that have to do with the circle?
 
I'm so confused by this post. Are you talking about how ##e^{i\theta}## is a circle in the complex plane with radius ##1##, or how the series expansion for ##(1+\frac{1}{n})^n## is ##e-\frac{e}{2n}+O(\frac{1}{n^2})##, or something else?

Regardless, e certainly is an amazing number and pops up in tons of (un)expected places.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top