CKM Matrix and mass eigenstates

da_willem
Messages
594
Reaction score
1
First off, what is a mass eigenstate?! Is there a (hermitian) operator associated to mass? What should I picture when discussing a non-mass-eigenstate?! The same goes for a 'weak eigenstate' as the CKM matrix is supposed to be the basis transformation between these two... :rolleyes:

The I read that 'a linear transformation which diagonalizes the mass terms of the u-type quarks does not necessarily diagonalize those of the d-type quarks.'

What does this mean, and why not?!

Finally, I rwill be very much helped by any insight on the meaning of this matrix and its properties, e.g. why its unitary...? :blushing:

Sorry, the more I learn the less I seem to know...
 
Physics news on Phys.org
da_willem said:
First off, what is a mass eigenstate?! Is there a (hermitian) operator associated to mass?
It's more convenient to use the mass^2 operator, i.e: E^2 - p^2. A mass
eigenstate is an eigenstate of this operator. Such a state has a determinate
mass value.

What should I picture when discussing a non-mass-eigenstate?!
I'm not sure what you mean by "picture". A "non-mass-eigenstate" is a
superposition of more than one mass eigenstate. It's mass is therefore
indeterminate (i.e: there's some probability of measuring any of the
mass values of the mass-eigenstates that have been superposed).

The same goes for a 'weak eigenstate' as the CKM matrix is
supposed to be the basis transformation between these two... :rolleyes:
The states that participate in the weak interaction are not mass-eigenstates
in general, but a superposition of mass eigenstates.

The I read that 'a linear transformation which diagonalizes the mass
terms of the u-type quarks does not necessarily diagonalize those of the d-type
quarks.' What does this mean, and why not?!
It means the operator (i.e: observable) corresponding to the flavor property
(u,d,etc) does not commute with the operator corresponding to the mass
property. So if you choose a Hilbert space basis corresponding to the
flavor eigenstates, they are in general a non-trivial superposition of mass
eigenstates.

Finally, I rwill be very much helped by any insight on the meaning
of this matrix and its properties, e.g. why its unitary...?
Such a transformation matrix is an operator in Hilbert space. It must be
unitary to preserve inner products between states in the Hilbert space.

Sorry, the more I learn the less I seem to know...
I know the feeling.

- strangerep
 
Thanks very much for that! I guess that for any observable there is an operator, so also for (quark) mass and flavour. I just never came across (explicit representations of) such operators, so find them weird, rather than just an extension of what I know within the quantum formalism. Thanks very much again, for just showing that even in the standard model things are just like the hermitian operators and unitary transformations of ordinary quantum mechanics!
 
da_willem said:
Thanks very much for that! I guess that for any observable there is an operator, so also for (quark) mass and flavour. I just never came across (explicit representations of) such operators, so find them weird, rather than just an extension of what I know within the quantum formalism. Thanks very much again, for just showing that even in the standard model things are just like the hermitian operators and unitary transformations of ordinary quantum mechanics!
I also needed much self-teaching before I finally realized that it's all about
Hilbert space operators. Or more precisely, it's all about relativistic QFT: unitary
operators in a multi-particle Hilbert space (aka Fock space) which has been
explicitly constructed so as to carry a (tensor product of) irreducible
representations of the Poincare group and the various internal symmetry
groups of the standard model.

- strangerep.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Replies
1
Views
2K
Replies
3
Views
1K
Replies
11
Views
7K
Replies
4
Views
2K
Replies
3
Views
3K
Replies
3
Views
1K
Replies
7
Views
10K
Back
Top