Classifying Critical Points: Finding Local Extrema and Saddle Points

kukumaluboy
Messages
61
Reaction score
1

Homework Statement



v75ajc.png

Homework Equations

The Attempt at a Solution



1)
I found the asymptote as (+/- 1)

2)
Let f(x) = y;

dy/dx = -2x^2 / (x^4 - 2x^2 + 1) = 0

-2x^2 - 0
x = 0;

Since f() != 1, f(2) > 0 Increasing
Since f() != -1, f(-2) < 0 Decreasing

So i guess range is increasing or x >=2, decreasing for x<=-2

3)
Since x = 0, how find local max or min or what the toot is saddle point..
 
Physics news on Phys.org
kukumaluboy said:

Homework Statement



v75ajc.png

Homework Equations

The Attempt at a Solution



1)
I found the asymptote as (+/- 1)

2)
Let f(x) = y;

dy/dx = -2x^2 / (x^4 - 2x^2 + 1) = 0

-2x^2 - 0
x = 0;

Since f() != 1, f(2) > 0 Increasing
Since f() != -1, f(-2) < 0 Decreasing

So i guess range is increasing or x >=2, decreasing for x<=-2

3)
Since x = 0, how find local max or min or what the toot is saddle point..

Your first derivative dy/dx is wrong. Use the quotient rule!
 
kukumaluboy said:

Homework Statement



v75ajc.png

Homework Equations

The Attempt at a Solution



1)
I found the asymptote as (+/- 1)

2)
Let f(x) = y;

dy/dx = -2x^2 / (x^4 - 2x^2 + 1) = 0

-2x^2 - 0
x = 0;

Since f() != 1, f(2) > 0 Increasing
Since f() != -1, f(-2) < 0 Decreasing

So i guess range is increasing or x >=2, decreasing for x<=-2

3)
Since x = 0, how find local max or min or what the toot is saddle point..
I think you've differentiated that incorrectly, remember to use the product (or quotient) rule.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top