Clockwise rotation of the reflection coefficient w/ frequency

Click For Summary
The discussion centers on the behavior of the input reflection coefficient, ρ, of a linear time-invariant (LTI) causal passive system, which is noted to exhibit a local clockwise rotation with frequency when plotted on a Smith chart. This clockwise rotation is distinct from the negative derivative of phase with frequency, particularly in lossless systems, where it aligns with Foster’s reactance theorem. However, the lack of rigorous proof for lossy systems is highlighted, as existing literature primarily addresses the lossless case. The mathematical formulation provided indicates that the curvature of the reflection coefficient curve is negative, confirming the clockwise rotation. The thread concludes with a request for references or theorems that could support these observations, particularly in relation to energy considerations or the Kramers-Kronig relations.
WhiteHaired
Messages
17
Reaction score
0
It is always considered that the evolution of the input reflection coefficient, ρ, of a LTI causal passive system with frequency, f, always presents a local clockwise rotation when plotted in cartesian axes (Re(ρ), Im(ρ)), e.g. in a Smith chart, as shown in the attached figure.

It must appointed that the local clockwise rotation should not be confused with the derivative of the phase with frequency, which is always negative when the curve encompasses the center of the Smith chart, but it may be positive otherwise (e.g. in a resonant series RLC circuit with R>Z0, where Z0 is the port characteristic impedance). The question here concerns the local rotation, which is always clockwise.

For lossless systems, it may be explained from the Foster’s reactance theorem, “The imaginary immittance of a passive, lossless one-port monotonically increases with frequency”, which has been demonstrated in different ways in literature. It also applies for the reflection coefficient, since the bilinear transform (from immitance to reflection coefficient) preserves orientation.

However I couldn’t find any rigorous proof for lossy systems. Books and manuscripts always reference the lossless case and the Foster’s theorem.

Do you know any reference?

In geometry, for a plane curve given parametrically in Cartesian coordinates as (x(f),y(f)), the signed curvature, k, is

k=\frac{x'y''-y'x''}{(x^{2}+y^{2})^{3/2}}

where primes refer to derivatives with respect to frequency f. A negative value means that the curve is clockwise. Therefore, the reflection coefficient of a LTI causal passive system with frequency, f, has always a negative curvature when plotted in Cartesian coordinates (Re(ρ), Im(ρ)), i.e., it satisfies:

\frac{∂Re(ρ)}{∂f}\frac{∂^{2}Im(ρ)}{∂f^{2}}<\frac{∂Im(ρ)}{∂f}\frac{∂^{2}Re(ρ)}{∂f^{2}}

or, equivalently,

\frac{∂}{∂f}\left[\frac{\frac{∂Im(ρ)}{∂f}}{\frac{∂Re(ρ)}{∂f}}\right]<0→\frac{∂}{∂f}\left(\frac{∂Im(ρ)}{∂Re(ρ)}\right)<0

The same would apply to the complex impedance Z=R+j*X, (or admittance), i.e., \frac{∂R}{∂f}\frac{∂^{2}X}{∂f^{2}}<\frac{∂X}{∂f}\frac{∂^{2}R}{∂f^{2}} and \frac{∂}{∂f}\left(\frac{∂X}{∂R}\right)<0

Is all this right?

Do you know any theorem, property of LTI causal passive systems, energy considerations from which one may conclude this? Kramer-Kronig relations or Hilbert transform?

I would appreciate your help on this.
View attachment 77655
 
Thank you, not for the moment.
 
Thread 'I thought it was only Amazon that sold unsafe junk'
I grabbed an under cabinet LED light today at a big box store. Nothing special. 18 inches in length and made to plug several lights together. Here is a pic of the power cord: The drawing on the box led me to believe that it would accept a standard IEC cord which surprised me. But it's a variation of it. I didn't try it, but I would assume you could plug a standard IEC cord into this and have a double male cord AKA suicide cord. And to boot, it's likely going to reverse the hot and...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
2K
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K