Coefficients of characteristic polynomial

jostpuur
Messages
2,112
Reaction score
19
I want to write an algorithm that gives as output the numbers a_n,\ldots, a_1,a_0, when a matrix A\in\mathbb{R}^{n\times n} is given as input, such that

<br /> \det (A - \lambda) = a_n\lambda^n + \cdots + a_1\lambda + a_0,\quad\quad\forall\lambda\in\mathbb{C}<br />

If n=2,

<br /> a_2 = 1,\quad a_1 = -\textrm{tr}(A),\quad a_0 = \textrm{det}(A).<br />

If n=3,

<br /> a_3 = -1,\quad a_2 = \textrm{tr}(A),\quad a_0 = \textrm{det}(A)<br />
and
<br /> a_1 = -A_{11}A_{22} - A_{22}A_{33} - A_{33}A_{11} + A_{12}A_{21} + A_{23}A_{32} + A_{31}A_{13}<br />

So the coefficients a_n,a_{n-1},a_0 are easy, but a_{n-2},\ldots, a_1 get difficult. Is there any recursion formula for them?
 
Physics news on Phys.org
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top