Column Space of A'*A: Subset of A'?

MichaelL.
Messages
3
Reaction score
0
Let A be an n x p matrix with real entries and A' be its transpose. Is the column space of A'*A the same as the column space of A'. Obviously, the column space of A'*A is a subset of the column space of A' but can I show the other way? Thanks!
 
Physics news on Phys.org
Well, I figured it out if anyone is interested.

Using the argument here (http://en.wikipedia.org/wiki/Rank_(linear_algebra)) under rank of a "Gram matrix" with real entries and the rank + nullity equals number of columns theorem you can show the rank of A equals the rank of A'*A.

Thus, the rank(A')=rank(A)=rank(A'*A). So the column space of A' has the same dimension as the column space of A'*A and since the column space of A'*A is a subset of the column space of A' as vector spaces of the same dimension they are the same.

I think that's right!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top