You have done correctly with some typos.
H_1=\left(<br />
\begin{array}{cccc}<br />
\text{s1} & 0 & 0 & 0 \\<br />
0 & \text{s2} & 0 & 0 \\<br />
0 & 0 & \text{s3} & 0 \\<br />
0 & 0 & 0 & \text{s4} \\<br />
\end{array}<br />
\right),
and define identity operator on first space
I_1=\left(<br />
\begin{array}{cccc}<br />
1 & 0 & 0 & 0 \\<br />
0 & 1 & 0 & 0 \\<br />
0 & 0 & 1 & 0 \\<br />
0 & 0 & 0 & 1 \\<br />
\end{array}<br />
\right).
Similarly
H_2=\left(<br />
\begin{array}{ccc}<br />
\text{t1} & 0 & 0 \\<br />
0 & \text{t2} & 0 \\<br />
0 & 0 & \text{t3} \\<br />
\end{array}<br />
\right),
and identity operator on second space
I_2=\left(<br />
\begin{array}{ccc}<br />
1 & 0 & 0 \\<br />
0 & 1 & 0 \\<br />
0 & 0 & 1 \\<br />
\end{array}<br />
\right).
The total Hamiltonian now should be \hat{H}_1 \otimes I_2 + I_1 \otimes \hat{H}_2 + \hat{H}_{int}. We can evaluate terms as follows
H_1 \otimes I_2 = \left(<br />
\begin{array}{cccccccccccc}<br />
\text{s1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & \text{s1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & \text{s1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & \text{s2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & \text{s2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & \text{s2} & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & \text{s3} & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{s3} & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{s3} & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{s4} & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{s4} & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{s4} \\<br />
\end{array}<br />
\right),
as you have done correctly.
Second term is
I_1 \otimes H_2 = \left(<br />
\begin{array}{cccccccccccc}<br />
\text{t1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & \text{t2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & \text{t3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & \text{t1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & \text{t2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & \text{t3} & 0 & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & \text{t1} & 0 & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{t2} & 0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{t3} & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{t1} & 0 & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{t2} & 0 \\<br />
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{t3} \\<br />
\end{array}<br />
\right).
(you did correctly but it seems lot of typesetting made you overlook the order I_1 \otimes H_2

.
And you can add these matrices to get total Hamiltonian matrix (without interaction).