Combining Logs: a.log(b)+ c.log(d)?

  • Thread starter Thread starter Fairy111
  • Start date Start date
Fairy111
Messages
72
Reaction score
0

Homework Statement



If you have a.log(b)+ c.log(d), is that equal to,

(a+c)log(bd) or (a.c)log(bd) ?

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
You know that a \log b=\log b^a and you also know that \log a+\log b=\log ab. Try to apply these to your expression, to find the correct results (both the results you listed are incorrect).
 
Last edited:
So it would be log(b^a . d^c) ?
 
Hi Fairy111! :smile:

(try using the X2 tag just above the Reply box :wink:)
Fairy111 said:
So it would be log(b^a . d^c) ?

Yup! :biggrin:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top