HotMintea
- 42
- 0
Problem
I'd like to prove \frac{d}{dt}[\frac{\partial}{\partial{x}}f(x(t),y(t),t)]=\frac{\partial}{\partial{x}}[\frac{d}{dt}f(x(t),y(t),t)].
Attempt
\begin{equation*}\begin{split}<br /> \frac{d}{dt}[\frac{\partial}{\partial x}f(x(t),y(t),t)]=\frac{d}{dt}\lim_{\epsilon\to 0}\frac{f(x(t)+\epsilon,y(t),t)-f(x(t),y(t),t)}{\epsilon}\\<br /> =\lim_{\delta\to 0}\lim_{\epsilon\to 0} \frac{[f(x(t+\delta)+\epsilon,y(t+\delta),t+\delta)-f(x(t)+\epsilon,y(t),t)]-[f(x(t+\delta),y(t+\delta),t+\delta)-f(x(t),y(t),t)]}{\epsilon\delta}\end{split}\end{equation*}
So if my previous steps are correct, I need to show that the 2 limits are commutative, which I have no idea...
I'd like to prove \frac{d}{dt}[\frac{\partial}{\partial{x}}f(x(t),y(t),t)]=\frac{\partial}{\partial{x}}[\frac{d}{dt}f(x(t),y(t),t)].
Attempt
\begin{equation*}\begin{split}<br /> \frac{d}{dt}[\frac{\partial}{\partial x}f(x(t),y(t),t)]=\frac{d}{dt}\lim_{\epsilon\to 0}\frac{f(x(t)+\epsilon,y(t),t)-f(x(t),y(t),t)}{\epsilon}\\<br /> =\lim_{\delta\to 0}\lim_{\epsilon\to 0} \frac{[f(x(t+\delta)+\epsilon,y(t+\delta),t+\delta)-f(x(t)+\epsilon,y(t),t)]-[f(x(t+\delta),y(t+\delta),t+\delta)-f(x(t),y(t),t)]}{\epsilon\delta}\end{split}\end{equation*}
So if my previous steps are correct, I need to show that the 2 limits are commutative, which I have no idea...