So that's how the adjoint of the commutator is defined.
F_{-\left[\hat{A},\hat{B}\right]_{-},\phi} =\left\langle\phi,-\left[\hat{A},\hat{B}\right]_{-}\psi\right\rangle =\left\langle\phi,\hat{B}\hat{A}\psi\right\rangle-\left\langle\phi,\hat{A}\hat{B}\psi\right\rangle (7)
\psi\in\mathcal{D}_{\left[\hat{A},\hat{B}\right]_{-}} \Rightarrow \psi\in\mathcal{D}_{\hat{A}} \ \mbox{and} \ \psi\in\mathcal{D}_{\hat{B}} (8)
By hypothesis
\hat{A}\subset\hat{A}^{\dagger} (9)
\hat{B}\subset\hat{B}^{\dagger} (10)
From (8),(9) and (10) we conclude that
\psi\in\mathcal{D}_{\hat{A}^{\dagger}} \ \mbox{and} \ \psi\in\mathcal{D}_{\hat{B}^{\dagger}} (11)
Moreover
\hat{A}\hat{B}\psi=\hat{A}^{\dagger}\hat{B}^{\dagger} \psi (12)
\hat{B}\hat{A}\psi=\hat{B}^{\dagger}\hat{A}^{\dagger} \psi (13)
Using (7),(12) and (13),one gets
F_{-\left[\hat{A},\hat{B}\right]_{-},\phi} =\left\langle\phi,\left(\left(B^{\dagger}\hat{A}^{\dagger}-\hat{A}^{\dagger}\hat{B}^{\dagger}\right)\psi\right\rangle=\left\langle\phi,\left(\left(\hat{A}\hat{B}\right)^{\dagger}-\left(\hat{B}\hat{A}\right)^{\dagger}\right)\psi\right\rangle (14)
,where i used the operatorial inclusion
\left(\hat{A}\hat{B}\right)^{\dagger} \supseteq \hat{B}^{\dagger}\hat{A}^{\dagger} (15)
Using in (14) another operatorial inclusion
\left(\hat{A}-\hat{B}\right)^{\dagger}\supseteq \hat{A}^{\dagger}-\hat{B}^{\dagger} (16)
and the definition of the commutator,one gets
F_{-\left[\hat{A},\hat{B}\right]_{-},\phi} =F_{\left[\hat{A},\hat{B}\right]_{-}^{\dagger},\phi} (17)
Q.e.d.
Daniel.