Commutator of position and momentum

AI Thread Summary
The commutator of position and momentum, specifically ##[p_x, r]## where ##r=(x,y,z)##, can be expanded by calculating the individual commutators of ##p_x## with each position operator: ##[p_x, x]##, ##[p_x, y]##, and ##[p_x, z]##. This results in the expression ##[\hat{p}_x, \mathbf{\hat{r}}] = ([\hat{p}_x, \hat{x}], [\hat{p}_x, \hat{y}], [\hat{p}_x, \hat{z}])##. The vector operator ##\mathbf{\hat{r}}## comprises the three position operators, and their relationships follow the same principles as vector components. Thus, the expansion of the commutator reflects the inherent structure of these operators. Understanding this relationship is crucial for further analysis in quantum mechanics.
Kara386
Messages
204
Reaction score
2
How would ##[p_x, r]## be expanded? Where ##r=(x,y,z)##, the position operators. Do you do the commutators of ##p_x## with ##x, y,z## individually? So ##[p_x,x]+[p_x,y]+[p_x,z]## for example?
 
Last edited:
Physics news on Phys.org
Kara386 said:
How would ##[p_x, r]## be expanded? Where ##r=(x,y,z)##, the position operators. Do you do the commutators of ##p_x## with ##x, y,z## individually? So ##[p_x,x]+[p_x,y+p_x,z]## for example?

More generally, a vector operator such as ##\mathbf{\hat{r}}## represents three operators ##(\hat{x}, \hat{y}, \hat{z})##, related in the same way as the components of a vector.

In this case, essentially by definition:

##[\hat{p}_x, \mathbf{\hat{r}}] = ([\hat{p}_x, \hat{x}], [\hat{p}_x, \hat{y}], [\hat{p}_x, \hat{z}])##
 
  • Like
Likes Kara386
PeroK said:
More generally, a vector operator such as ##\mathbf{\hat{r}}## represents three operators ##(\hat{x}, \hat{y}, \hat{z})##, related in the same way as the components of a vector.

In this case, essentially by definition:

##[\hat{p}_x, \mathbf{\hat{r}}] = ([\hat{p}_x, \hat{x}], [\hat{p}_x, \hat{y}], [\hat{p}_x, \hat{z}])##
Ah, thank you. :)
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top