Commutator SO(3) - what am I doing wrong?

  • Thread starter Thread starter BWV
  • Start date Start date
  • Tags Tags
    Commutator So(3)
BWV
Messages
1,574
Reaction score
1,928
reading that the commutator of rotations on two orthogonal axes is i * the rotation matrix for the third axis

but if I commute this

\begin{pmatrix}\mathrm{cos}\left( \theta\right) & -\mathrm{sin}\left( \theta\right) & 0\cr \mathrm{sin}\left( \theta\right) & \mathrm{cos}\left( \theta\right) & 0\cr 0 & 0 & 1\end{pmatrix}

with this

\begin{pmatrix}1 & 0 & 0\cr 0 & \mathrm{cos}\left( \theta\right) & -\mathrm{sin}\left( \theta\right) \cr 0 & \mathrm{sin}\left( \theta\right) & \mathrm{cos}\left( \theta\right) \end{pmatrix}

I get (using innerproduct function in Maxima)
\begin{pmatrix}0 & \mathrm{cos}\left( \theta\right) \,\mathrm{sin}\left( \theta\right) -\mathrm{sin}\left( \theta\right) & -{\mathrm{sin}\left( \theta\right) }^{2}\cr \mathrm{cos}\left( \theta\right) \,\mathrm{sin}\left( \theta\right) -\mathrm{sin}\left( \theta\right) & 0 & \mathrm{cos}\left( \theta\right) \,\mathrm{sin}\left( \theta\right) -\mathrm{sin}\left( \theta\right) \cr {\mathrm{sin}\left( \theta\right) }^{2} & \mathrm{cos}\left( \theta\right) \,\mathrm{sin}\left( \theta\right) -\mathrm{sin}\left( \theta\right) & 0\end{pmatrix}

which has a determinant of zero and therefore not part of SO(3)

obviously I am not getting something, but don't see it. Any help is much appreciated
 
Physics news on Phys.org
you are confusing the Lie group and the Lie algebra. The commutation
relation applies to the Lie algebra (ie the generators of the Lie group).
 
ah, thanks.
 
Back
Top