Commuting Operators: When 2 Operators Don't Commute

  • Thread starter Thread starter Fe-56
  • Start date Start date
  • Tags Tags
    Operators
Fe-56
Messages
21
Reaction score
0
hello...this might look very stupid but I am totally confused...

Let have operators A, B, C. Let [A,B]=[A,C]=0 and [B,C] not 0...

When two operators commute, they have the same base in (Hilbert) space.
So base in A representation is the same as in the B representation and also
the basis in A and C representations are the same.

But if B and C do not commute, their basis are different.



There has to be a fatal error in here:))
thanx:-p
 
Physics news on Phys.org
Fe-56 said:
hello...this might look very stupid but I am totally confused...

Let have operators A, B, C. Let [A,B]=[A,C]=0 and [B,C] not 0...

When two operators commute, they have the same base in (Hilbert) space.
So base in A representation is the same as in the B representation and also
the basis in A and C representations are the same.

But if B and C do not commute, their basis are different.



There has to be a fatal error in here:))
thanx:-p

As far as I know, this happens only when there is degeneracy.

Let's say that the eigenstates of A are degenerate. Then if [A,B]=0, it means that the eigenstates of B can be written as some linear combination of the eigenstates of A. If [A,C]= 0, the same thing applies for the eigenstates of C (they can be written as a linear combination of the eigenstates of A).

Consider a set of eigenstates of A all corresponding to the same eigenvalue of A, say A \psi_n(x) = a \psi(x) . Then it will be possible to write some of the eigenstates of B (corresponding possibly to different eigenvalues of B) as some linear combinations of these \psi_n(x). And it will be possible to write some of the eigenstates of C as a different linear combination of the eigenstates of A (still corresponding to the same degenerate eigenvalue a). So A and B share a common set of basis states, A and C share a common basis of states but B and C don't.

An exception is if there is a state for which applying A, B or C all gives zero. Then all three operators may share the same eigenstate even if they don't all commute.


This is what happens, say, with {\vec L}^2 and L_x and L_z for example. We have [ {\vec L}^2,L_x] = [{\vec L}^2,L_z]=0 but [L_x,L_y] \neq 0 .
 
Last edited:
:!)

YES, that's it! :!)

so...there must be degeneracy in all eigenvalues of A, yes?

thankx a lot...



...and this was not any homework, someone replaced it from QT:))
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top