Commuting Operators: When 2 Operators Don't Commute

  • Thread starter Thread starter Fe-56
  • Start date Start date
  • Tags Tags
    Operators
Fe-56
Messages
21
Reaction score
0
hello...this might look very stupid but I am totally confused...

Let have operators A, B, C. Let [A,B]=[A,C]=0 and [B,C] not 0...

When two operators commute, they have the same base in (Hilbert) space.
So base in A representation is the same as in the B representation and also
the basis in A and C representations are the same.

But if B and C do not commute, their basis are different.



There has to be a fatal error in here:))
thanx:-p
 
Physics news on Phys.org
Fe-56 said:
hello...this might look very stupid but I am totally confused...

Let have operators A, B, C. Let [A,B]=[A,C]=0 and [B,C] not 0...

When two operators commute, they have the same base in (Hilbert) space.
So base in A representation is the same as in the B representation and also
the basis in A and C representations are the same.

But if B and C do not commute, their basis are different.



There has to be a fatal error in here:))
thanx:-p

As far as I know, this happens only when there is degeneracy.

Let's say that the eigenstates of A are degenerate. Then if [A,B]=0, it means that the eigenstates of B can be written as some linear combination of the eigenstates of A. If [A,C]= 0, the same thing applies for the eigenstates of C (they can be written as a linear combination of the eigenstates of A).

Consider a set of eigenstates of A all corresponding to the same eigenvalue of A, say A \psi_n(x) = a \psi(x) . Then it will be possible to write some of the eigenstates of B (corresponding possibly to different eigenvalues of B) as some linear combinations of these \psi_n(x). And it will be possible to write some of the eigenstates of C as a different linear combination of the eigenstates of A (still corresponding to the same degenerate eigenvalue a). So A and B share a common set of basis states, A and C share a common basis of states but B and C don't.

An exception is if there is a state for which applying A, B or C all gives zero. Then all three operators may share the same eigenstate even if they don't all commute.


This is what happens, say, with {\vec L}^2 and L_x and L_z for example. We have [ {\vec L}^2,L_x] = [{\vec L}^2,L_z]=0 but [L_x,L_y] \neq 0 .
 
Last edited:
:!)

YES, that's it! :!)

so...there must be degeneracy in all eigenvalues of A, yes?

thankx a lot...



...and this was not any homework, someone replaced it from QT:))
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top