Compactness and Connectedness in Continuous Functions: A Closer Look

  • Thread starter Thread starter deanslist1411
  • Start date Start date
  • Tags Tags
    advanced
deanslist1411
Messages
4
Reaction score
0
1. If set A is compact, show that f(A) is compact. Is the converse true?

Ans. f:M to N is continuous and A subset M is compact. Then f(A) is compact.
The converse is not necessarilly true. For Ex: F(x)=0 for every x in R(real #'s) and
k={0}. Then f^-1(k)=R is not compact.

2. If set A is connected, show that f(A) is connected. Is the converse true?

Ans. f:M to N is continuous and A subset M is connected. Then f(A) is connected.
The converse is not necessarilly true. For Ex: F(x)=x^2 and k=1.
Then f^-1(k)={-1,1} which is not connected.

3. If set B is closed, show that B inverse is closed.

Ans. f is continuous on B if f is continuous on every x sub 0 element B.
a. f is continuous on B
b. for every x sub n to x sub 0 in A. f(x sub n) approaches f(x sub 0)
c. for any u open in N, f^-1(u) is open in M
d. for any F closed in N, f^-1(F) is closed in M.


If anyone can add to this I would be greatfull.
 
Physics news on Phys.org
I would say that your solutions for 1 and 2 really don't seem to be sufficient, unless you're already told that the continuous images of compact/connected sets are compact/connected, in which case this is a trivial question. Is f continuous? For these to be true it must be but you haven't stated that anywhere. Furthermore, this constitutes a topology question rather than an analysis question.

1) To show that a set is compact it is necessary to show that every family of covers for that set has a finite subcover. In regard to this question, we need to show that if C is a cover for f(A), then there exists a finite subcover of f(A).

Let C be a cover of f(A), and define

C^\prime = \{ f^{-1}(U) | U \in C \}

Now what can we say about each U \in A given that f is continuous?

Furthermore, what is C^\prime with respect to A? How can we use the relation between C^\prime and A to find a finite subcover of the image?

2) For the sake of contradiction, assume that f(A) is not-connected. That is, it can be written as the disjoint union of two open sets. Since f is continuous, consider the pre-image of these sets. Why does this give a contradiction?
 
Open covers, that is!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top