Complex Analysis-Entire Functions

  • Thread starter Thread starter WannaBe22
  • Start date Start date
  • Tags Tags
    Complex Functions
WannaBe22
Messages
73
Reaction score
0

Homework Statement


Prove Or find a proper counterexample:
1. Let f be an entire function such as f(0)=101 and:
Re f(z) \geq 100 + Im(z) . Then f(i)=102 .

2. There exists an analytic function f from the unit circle to itself which satisfy:
f(\frac{i}{3})=\frac{1}{2} , f(\frac{1}{2}) = \frac{i}{3}.


Hope you'll be able to help me

Thanks

Homework Equations


The Attempt at a Solution

 
Physics news on Phys.org
You have to show what you've attempted to do on the problem before we can help you
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top