Finding Isomorphisms from D to R

  • Thread starter Thread starter WannaBe22
  • Start date Start date
  • Tags Tags
    Complex
WannaBe22
Messages
73
Reaction score
0

Homework Statement


I need to find isomorphisms from D to R in the next cases:

1. D=(z: 0<|z|<1)$ , $ R=(z:1<|z|<2)
2. D= (z: \frac{3 \pi}{4} <argz< \pi , |z|>2 )$ , $R= (z:Rez<0,0<Imz< \pi)
3. D=(z:0<Imz<2)-(z:z=x+i:x \leq -1) $ , $R= (z: |z|<1 , Imz>0).

Homework Equations



The Attempt at a Solution



I've no idea about these three cases...
Hope you'll be able to help me!

Tnx
 
Physics news on Phys.org
I don't know how to solve the latex problems...It should write it ok... I don't know what I did wrong
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top