Complex Analysis - Series Analytic Regions

  • Thread starter Thread starter WannaBe22
  • Start date Start date
  • Tags Tags
    Complex
WannaBe22
Messages
73
Reaction score
0
Homework Statement
Find the analytic regions of the next functions:

A. f(z)=\sum_{n=1}^{\infty} [ \frac{z(z+n)}{n}]^n
B. f(z)=\sum_{n=1}^{\infty} 2^{-n^2 z} \cdot n^n

Homework Equations


The Attempt at a Solution



In the first one: I've tried writing : f(z)= \sum \frac{z^{2n}}{n^n} + \sum z^n
and the second element in the sum converges iff |z|<1... Is it enough?

About B: We can write this series as: \sum [ \frac{n}{2^{nz}}]^n ... But I don't think it helps us...

Hope you'll be able to help me


TNX!
 
Physics news on Phys.org
WannaBe22 said:
Homework Statement
Find the analytic regions of the next functions:

A. f(z)=\sum_{n=1}^{\infty} [ \frac{z(z+n)}{n}]^n
B. f(z)=\sum_{n=1}^{\infty} 2^{-n^2 z} \cdot n^n
The first series ultimately grows like z^n exp(z) & hence converges for |z|<1.
The second problem can be tackled similarly.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top