Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Complex anaylsis, winding number question.

  1. Mar 11, 2012 #1
    So the in the equation for the winding number/index of a curve

    I([itex]\gamma[/itex], z) = [itex]\frac{1}{2i\pi}[/itex] [itex]\int\gamma \frac{1}{ζ-z}dζ[/itex]

    where [itex]\gamma[/itex] : [a, b] → ℂ and z is an arbitrary point not on [itex]\gamma[/itex], what exactly does ζ represent?
     
  2. jcsd
  3. Mar 11, 2012 #2

    mathwonk

    User Avatar
    Science Advisor
    Homework Helper

    It represents an arbitrary point of the curve gamma. I.e. it is a bound or "dummy" variable for any point of gamma. a fuller notation would be the integral over all zeta on gamma. But the fact that it appears after the "d" also tells you it is the variable of integration, and is usual.
     
  4. Mar 11, 2012 #3
    This is possibly a dumb question (please bear with me): the integration would be taken from a to be, correct? Could you post an example of this equation in use, please?
     
  5. Mar 11, 2012 #4

    mathwonk

    User Avatar
    Science Advisor
    Homework Helper

    yes, after parametrizing the curve gamma by an interval [a.b], then the integral is pulled back to that interval and THEN taken from a to b.

    e.g. just integrate dw/w over the unit circle, parametrizing it by cos(t) +i sin(t) for the interval [0,1]. try it. thats the winding number about z = 0 of the unit circle. (times 2pi.i)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Complex anaylsis, winding number question.
  1. Complex numbers (Replies: 10)

  2. Complex numbers (Replies: 3)

Loading...