Complex Arithmetic - Mathematica agrees with me, textbook says I'm wrong.

jdinatale
Messages
153
Reaction score
0
mathematica.png





Mathematica agrees with my second solution (not the first one though). The back of my textbook says: "\sqrt[4]{8}[\cos(\frac{5\pi}{8}) + i\sin(\frac{5\pi}{8})] and \sqrt[4]{8}[\cos(\frac{13\pi}{8}) + i\sin(\frac{13\pi}{8})]"


Edit: The second z in my picture should be |z|, the modulus.

Edit2: Here are the results from mathematica, confirming that both the textbook AND I are right...

http://www.wolframalpha.com/input/?i=(1+-+i)^(3/2)+=+(8^(1/4))[cos(45pi/8)+++i+sin(45pi/8)]
http://www.wolframalpha.com/input/?i=(1+-+i)^(3/2)+=+[8^(1/4)][cos(+13pi/8)+++isin(13pi/8)]

My question is, how did my textbook get that answer?
 
Physics news on Phys.org
You can get rid of multiples of ##2\pi##. For example, you have
$$\frac{21\pi}{8} = \frac{(16+5)\pi}{8} = 2\pi + \frac{5\pi}{8},$$ so your first answer is equivalent to the book's first answer. Similarly, you can show your second answer also matches the book's second answer.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top