Complex conjugates of functions

  • Thread starter Thread starter brmath
  • Start date Start date
  • Tags Tags
    Complex Functions
AI Thread Summary
The discussion focuses on the properties of the complex function f(z) and its relationship with its conjugate f*(1/z*). It explores whether there are known identities involving the product f(z)f*(1/z*), assuming f(z) is analytic or meromorphic. The conversation also touches on the decomposition of f*(1/z*) into a function of f. Participants clarify notation and provide insights into the real-valued components of the function. The inquiry seeks to uncover standard identities or inequalities related to this complex function product.
brmath
Messages
337
Reaction score
34
I am looking at a complex function f(z) and want to know something about f(z)f*(1/z*). We could assume for now that f(z) is analytic or at least meromorphic. Are there any identities involving this product? Is there any way to decompose the f*(1/z*) into a function of f?
 
Mathematics news on Phys.org
brmath said:
I am looking at a complex function f(z) and want to know something about f(z)f*(1/z*). We could assume for now that f(z) is analytic or at least meromorphic. Are there any identities involving this product? Is there any way to decompose the f*(1/z*) into a function of f?
Caveat: You mean "a complex function ##f##." ##f(z)## is the image (or "output") of ##z## under the function ##f##. This is a common abuse of notation.

Suppose ##f(x+iy)= u(x,y)+iv(x,y)##, where ##u## and ##v## are real-valued functions. Then, we have that ##\bar{f}(\frac{1}{x-iy})=\bar{f}(\frac{x}{x^2+y^2}+i\frac{y}{x^2+y^2})=u(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2})-iv(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2})##.

Thus, we have ##f(z)\bar{f}(\bar{z}^{-1})=u(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2})u(x,y)+v(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2})v(x,y)+i (u(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2}) v(x,y)-v(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2}) u(x,y))##.
 
Hi, I'll try not to write f(z) when I mean f. I already know that 1/z* = z/|z|. I had hoped there are some standard indentities or inequalities involving f(z)f*(1/z*).
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top