Complex Exponential Integration: Sin vs. Cos?

  • Thread starter Thread starter aks_sky
  • Start date Start date
  • Tags Tags
    Complex
aks_sky
Messages
53
Reaction score
0
∫_0^∞ e^-x sin (ax) dx

integrating from 0 to infinity for e^-x sin (ax)

i was wondering that if i use complex exponentials for this will it be the same as solving for ∫_0^∞ e^-x cos (ax) dx. Will it make any difference if there is sin instead of cos because i know how to solve for cos (ax) but i don't know if it makes any difference if the cos is replaced by a sin.. does it make any difference?

cheers
 
Physics news on Phys.org
It makes a difference in the sense that the answer is different, yes. The technique is pretty much the same, if that's what you mean.
 
yup, because if i use cos (ax) i can replace it with e ^ i(ax) because i can use the complex exponential there. But what do i use for sin (ax).. i will just do what i did for cos (ax)

∫_0^∞ e^-x. e^i(ax) ... (((since ∫_0^∞ e-x (cos ax + isin ax) dx)))

Therefore we get:

∫_0^∞ e^-(1-ia)x dx

then i can go ahead from there to get 1/ 1 + a^2... now the only thing i am confused with is that this is for the complex exp. for cos (ax) what will it be for sin (ax)
 
Are you claiming that \cos ax+i \sin ax=\cos a x? This is of course not true. Try \sin x=Im(e^{i x}).
 
aks_sky said:
yup, because if i use cos (ax) i can replace it with e ^ i(ax) because i can use the complex exponential there.
You can't just "replace it with e^i(ax)". e^(iax)= cos(x)+ i sin(x). You can replace cos(x) with e^i(ax) and then just take the real part of the answer. And, of course, with sin(ax) you can replace it with e^i(ax) and take only the imaginary part of the answer.

But what do i use for sin (ax).. i will just do what i did for cos (ax)

∫_0^∞ e^-x. e^i(ax) ... (((since ∫_0^∞ e-x (cos ax + isin ax) dx)))

Therefore we get:

∫_0^∞ e^-(1-ia)x dx

then i can go ahead from there to get 1/ 1 + a^2... now the only thing i am confused with is that this is for the complex exp. for cos (ax) what will it be for sin (ax)
 
ahhh i get it.. sweet.. thank u
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top