By the way, there are problems involved with defining "i= \sqrt{-1}'. It can be shown that, in the complex numbers, all numbers have two square roots- so that notation is ambiguous. A better way to define the complex numbers is as pairs of real numbers, (a, b) with addition defined by (a, b)+ (c, d)= (a+ c, b+ d) and multiplication defined by (ab- cd, ad+ bc).
It can be show that this is a field with additive identity (0, 0) and multiplicative identity (1, 0). Further, the field of real numbers can be identified with the subfield (a, 0).
If we then represent multiplication of a real number, a, by a complex number, (b, c) with (a, 0)(b, c) as (ab,, ac), every complex number can be written in the form (a, b)= (a, 0)+ (0, b)= a(1, 0)+ b(0, 1). We have already agreed to represent the real number "1" by "(1, 0)". If we now agree to write i= (0, 1) we have (a, b)= a+ bi.