MHB Complex numbers such that modulus (absolute value) less than or equal to 1.

AI Thread Summary
For complex numbers u = a + bi and v = c + di with moduli less than or equal to 1, it is established that a² + b² < 1 and c² + d² < 1. The sum u + v results in a modulus |u + v| that can be expressed as √(a² + b² + c² + d² + 2ac + 2bd), which is constrained by the inequality involving ac + bd. It is shown that if ac + bd is positive, then |u - v| is limited to √2, while if negative, |u + v| is also limited to √2. The discussion hints at a more complex problem that may require an inductive proof approach. The findings reinforce the relationships between the moduli of complex numbers within the unit circle.
Taleb
Messages
1
Reaction score
0
Problem.png
 
Mathematics news on Phys.org
Write u= a+ bi and v= c+ di. If modulus u and v are both less than 1 the $\sqrt{a^2+ b^2}< 1$ and $\sqrt{c^2+d^2}< 1$ so $a^2+ b^2< 1$ and $c^2+ d^2< 1$.

u+ v= (a+ c)+(b+ d)i. $|u+v|= \sqrt{(a+ c)^2+ (b+ d)^2}=$$\sqrt{a^2+ 2ac+ c^2+ b^2+ 2bd+ d^2}= $$ \sqrt{(a^2+ b^2)+ (c^2+ d^2)+ (2ac+2bd)}< \sqrt{1+ 1+ 2(ac+ bd)}< \sqrt{2+ 2(ac+ bs)}$

Can you prove that $ac+ bd$ is less than 1/2?
 
Following up on Country Boy's calculation, notice that if $v$ is replaced by $-v$ then $b$ becomes $-b$ and $d$ becomes $-d$. Therefore $$|u+v| \leqslant \sqrt{2+2(ac+bd)}, \qquad |u-v| \leqslant \sqrt{2-2(ac+bd)}.$$ It follows that if $ac+bd>0$ then $|u-v| \leqslant\sqrt2$, and if $ac+bd<0$ then $|u+v|\leqslant\sqrt2$. That proves 1). (In fact it proves a stronger result, with $\sqrt2$ instead of $\sqrt3$.)

Problem 2) seems to be a lot harder. I found a sketch here of how to prove it by induction (again with $\sqrt2$ rather than $\sqrt3$).
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top