How do we express complex powers like 21+i in standard form?

AI Thread Summary
To express complex powers like 21+i in standard form, the discussion highlights the use of Euler's formula, e^(ix) = cos(x) + i sin(x). The transformation of complex numbers involves logarithmic properties, allowing expressions like a^(bi) to be rewritten using exponentials. Specifically, 2^i can be calculated as cos(ln(2)) + i sin(ln(2)), resulting in approximately 0.769 + 0.639i. Consequently, for 21+i, the expression simplifies to 2[cos(ln(2)) + i sin(ln(2))], yielding a final result of 2 cos(ln(2)) + 2i sin(ln(2)). This method effectively demonstrates how to convert complex powers into the standard a + bi form.
Lonewolf
Messages
329
Reaction score
1
How do we express complex powers of numbers (e.g. 21+i) in the form a+bi, or some other standard form of representation for complex numbers?
 
Mathematics news on Phys.org
First, of course, 21+i= 2*2i so the question is really about 2i (or, more generally, abi).

Specfically, look at eix.

It is possible to show (using Taylor's series) that

e^(ix)= cos(x)+ i sin(x).

a^(bi)= e^(ln(a^(bi))= e^(bi*ln(a))= cos(b ln(a))+ i sin(b ln(a))
= cos(ln(a^b))+ i sin(ln(a^b))

For your particular case, 2^i= cos(ln(2))+ i sin(ln(2))
= 0.769+ 0.639 i.

2^(1+i)= 2(0.769+ 0.639i)= 0.1538+ 1.278 i.
 
21+i= 2*2i

Now why didn't I see that? Oh well, thanks for pointing it out. :smile:
 
You're no doubt familiar with Euler's expression

exp(i x) = cos(x) + i sin(x)

You're probably also familiar that logarithms can be expressed in any base you'd like, like this:

loga x = ( logb x ) / ( logb] a )

For example, if your calculator has only log base 10, and you want to compute log2 16, you could enter

log10 16 / log10 2

We can put these facts together to good use.

To start with, let's try a simple one: express 2i in the a + bi form. We can express 2i as a power of e by solving this equation:

2i = ex
i ln 2 = x

We've just used the logarithm rule I described above in "reverse." So we've just changed the problem to expressing exp(i ln 2) in a + bi form. Now we can just apply Euler's identity, and we get

exp(i ln 2) = cos(ln 2) + i sin(ln 2).

Thus 2i = cos(ln 2) + i sin(ln 2), as we wished to find.

Now let's try 21 + i. I'm going to skip all the fanfare and just show the steps.

21+i = ex
(1+i) ln 2 = x

e(1+i) ln 2 = 21+i
eln 2 + i ln 2
eln 2 ei ln 2
2 ei ln 2
2 [ cos(ln 2) + i sin(ln 2) ]
2 cos(ln 2) + 2 i sin(ln 2)

Hope this helps.

- Warren
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top