I Components of Riemann Tensor: 4 Indexes, 16x16 Matrix

Z3kr0m
Messages
19
Reaction score
0
Hello, Riemann tensor ##R^i_{jkl}## 4 indexes, and it should be matrix 16x16 in spacetime if we have time coirdinate - 0 and space coordinates -1,2,3. But how should I write the components to matrix? For example ##\begin{pmatrix}R^0_{000} & R^1_{000} & R^2_{000} ... \\ R^0_{100} & R^1_{100} & R^2_{100} ...\\ R^0_{200} & R^1_{200} ... \\ R^0_{300} ... \end{pmatrix}##?
 
Physics news on Phys.org
Z3kr0m said:
Hello, Riemann tensor ##R^i_{jkl}## 4 indexes, and it should be matrix 16x16 in spacetime if we have time coirdinate - 0 and space coordinates -1,2,3. But how should I write the components to matrix? For example ##\begin{pmatrix}R^0_{000} & R^1_{000} & R^2_{000} ... \\ R^0_{100} & R^1_{100} & R^2_{100} ...\\ R^0_{200} & R^1_{200} ... \\ R^0_{300} ... \end{pmatrix}##?
You can't. The two-dimensional matrix representation only works for rank-two tensors (those with only two indices). Even then you have to be alert to whether you are representing the components of the tensor with contravariant or covariant (upper or lower) indices - this information is lost in the matrix representation, so it's best to avoid it altogether.
 
So I must write out the components one by one?
 
Z3kr0m said:
So I must write out the components one by one?
Yes, but you have to do that whether you're arranging the values you're writing down in a matrix or not.
 
Z3kr0m said:
Hello, Riemann tensor ##R^i_{jkl}## 4 indexes, and it should be matrix 16x16 in spacetime if we have time coirdinate - 0 and space coordinates -1,2,3. But how should I write the components to matrix? For example ##\begin{pmatrix}R^0_{000} & R^1_{000} & R^2_{000} ... \\ R^0_{100} & R^1_{100} & R^2_{100} ...\\ R^0_{200} & R^1_{200} ... \\ R^0_{300} ... \end{pmatrix}##?

It's not really a matrix, its a 4x4x4x4 tensor. But if you group the first two componetns together, and the last two, you can write the 256 element tensor as a 16x16 matrix.

I've only seen discussions (in MTW's "Gravitation") of ##R_{ijkl}## and NOT ##R^i{}_{jkl}## however. To take advantage of the skew symmetries ##R_{ijkl} = -R_{jikl} = -R_{ijlk}## https://en.wikipedia.org/wiki/Riemann_curvature_tensor#Symmetries_and_identities, I believe one needs the indices to be all lower, or all upper, not mixed. It is possible I am mistaken.

If one does consider the all-lower index ##R_{ijkl}##, the skew symmetries imply that ##R_{00**} = R_{11**} = R_{22**} = R_{33**} = 0##, i.e. any repeated index in the first pair must be zero. A similar argument leads to the same conclusion for repeated indices in the last pair. This lowers the Riemann to a 12x12 matrix by dropping the 4 zero diagional elelents, , and a further reduction to a 6x6 matrix by only specifying ##R_{ij**}## where i<j, as ##R_{ji**} = -R_{ij**}##.

The natural pair-groupings are (0,1), (0,2), (0,3) and their duals *(0,1) = (2,3), *(0,2) = (1,3), *(0,3)=(1,2) in a coordinate or orthonormal basis.

Using this approach, the 256 element tensor becomes a 6x6 symmetric matrix, where the symmetry comes from the "interchange symmetry", ##R_{ijkl} = R_{klij}##.

This can be further decomposed into three (in GR) 3x3 matrices Wiki calls this the Bel decomposition, https://en.wikipedia.org/wiki/Bel_decomposition, MTW does a similar decomposition but doesn't use this name to describe it.

Two of the 3x3 matrices from this decomposition are symmetric, the so-called electrogravitc and topogravitc tensors. This is a total of 21 degree of freedom, there is one additional constraint due to the Bianchi identity that reduces the degrees of freedom of the Riemann to 20.
 
  • Like
Likes PeterDonis
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top