Math Amateur
Gold Member
MHB
- 3,920
- 48
I am reading Dummit and Foote (D&F) Section 15.1 on Affine Algebraic Sets.
On page 662 (see attached) D&F define a morphism or polynomial map of algebraic sets as follows:
-----------------------------------------------------------------------------------------------------
Definition. A map \phi \ : V \rightarrow W is called a morphism (or polynomial map or regular map) of algebraic sets if
there are polynomials {\phi}_1, {\phi}_2, ... , {\phi}_m \in k[x_1, x_2, ... ... x_n] such that
\phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... , {\phi}_m ( a_1, a_2, ... a_n))
for all ( a_1, a_2, ... a_n) \in V
----------------------------------------------------------------------------------------------D&F then go on to define a map between the quotient rings k[W] and k[V] as follows: (see attachment page 662)----------------------------------------------------------------------------------------------
Suppose F is a polynomial in k[x_1, x_2, ... ... x_n].
Then F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m) is a polynomial in k[x_1, x_2, ... ... x_n]
since {\phi}_1, {\phi}_2, ... , {\phi}_m are polynomials in x_1, x_2, ... ... , x_n.
... ... etc etc
----------------------------------------------------------------------------------------------
I am concerned that I do not fully understand exactly how/why F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m).
I may be obsessively over-thinking the validity of this matter (that may be just a notational matter) ... but anyway my understanding is as follows:
F \circ \phi (( a_1, a_2, ... a_n))
= F( \phi (( a_1, a_2, ... a_n))
= F( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... , a_n), ... ... ... , {\phi}_m ( a_1, a_2, ... a_n) )
= F ( {\phi}_1, {\phi}_2, ... ... ... , {\phi}_m ) ( a_1, a_2, ... , a_n)
so then we have that ...
F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m).
Can someone please confirm that the above reasoning and text is logically and notationally correct?
Peter
On page 662 (see attached) D&F define a morphism or polynomial map of algebraic sets as follows:
-----------------------------------------------------------------------------------------------------
Definition. A map \phi \ : V \rightarrow W is called a morphism (or polynomial map or regular map) of algebraic sets if
there are polynomials {\phi}_1, {\phi}_2, ... , {\phi}_m \in k[x_1, x_2, ... ... x_n] such that
\phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... , {\phi}_m ( a_1, a_2, ... a_n))
for all ( a_1, a_2, ... a_n) \in V
----------------------------------------------------------------------------------------------D&F then go on to define a map between the quotient rings k[W] and k[V] as follows: (see attachment page 662)----------------------------------------------------------------------------------------------
Suppose F is a polynomial in k[x_1, x_2, ... ... x_n].
Then F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m) is a polynomial in k[x_1, x_2, ... ... x_n]
since {\phi}_1, {\phi}_2, ... , {\phi}_m are polynomials in x_1, x_2, ... ... , x_n.
... ... etc etc
----------------------------------------------------------------------------------------------
I am concerned that I do not fully understand exactly how/why F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m).
I may be obsessively over-thinking the validity of this matter (that may be just a notational matter) ... but anyway my understanding is as follows:
F \circ \phi (( a_1, a_2, ... a_n))
= F( \phi (( a_1, a_2, ... a_n))
= F( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... , a_n), ... ... ... , {\phi}_m ( a_1, a_2, ... a_n) )
= F ( {\phi}_1, {\phi}_2, ... ... ... , {\phi}_m ) ( a_1, a_2, ... , a_n)
so then we have that ...
F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m).
Can someone please confirm that the above reasoning and text is logically and notationally correct?
Peter