MHB Compute Two Series: Summation Notation

  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Series
AI Thread Summary
The discussion focuses on computing two series using summation notation. The first series converges to \(1 - \sqrt{\frac{1}{2}}\), derived from the expansion of \((1+x)^{-\frac{1}{2}}\). The second series is more complex, involving factorials and the gamma function, ultimately leading to the result \(1 + \frac{\pi}{2}\). The participants utilize properties of arcsine and various mathematical transformations to derive these results. The conversation highlights the intricacies of series summation and the application of advanced mathematical concepts.
Krizalid1
Messages
106
Reaction score
0
Compute the following series:

$$\frac{1}{2} - \frac{{1 \times 3}}{{2 \times 4}} + \frac{{1 \times 3 \times 5}}{{2 \times 4 \times 6}} \mp \cdots ,$$ $$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$
 
Mathematics news on Phys.org
Krizalid said:
Compute the following series:

$$\frac{1}{2} - \frac{{1 \times 3}}{{2 \times 4}} + \frac{{1 \times 3 \times 5}}{{2 \times 4 \times 6}} \mp \cdots ,$$

Remembering that is...

$\displaystyle (1+x)^{-\frac{1}{2}}= 1 - \frac{1}{2}\ x + \frac{1\ 3}{2\ 4}\ x^{2} - \frac{1\ 3\ 5}{2\ 4\ 6}\ x^{3} + ...$ (1)

... is...

$\displaystyle \frac{1}{2} - \frac{1\ 3}{2\ 4} + \frac{1\ 3\ 5}{2\ 4\ 6}- ...= 1- \sqrt{\frac{1}{2}}$ (2)

Kind regards

$\chi$ $\sigma$
 
Last edited:
Yes, that's correct.
Second series is harder though.
 
I think that the second problem has some thing to do with \( \displaystyle \arcsin(x)=\sum_{0}^{\infty}\frac{(2n)!}{4^n (2n+1) (n!)^2}x^{2n+1}\).
 
Krizalid said:
Compute the following series:

$$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$

The solution of the second series is effectively a little more difficult task!... let's start defining...

$\displaystyle \varphi(x)= \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}\ x^{n}$ (1)

... so that is $\displaystyle \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}= \varphi(1)$. Introducing the gamma function, taking into account that is...

$\displaystyle (2n-1)!= \frac{2^{n}}{\sqrt{\pi}}\ \Gamma(n+\frac{1}{2})$ (2)

... the (1) becomes...

$\displaystyle \varphi(x)= \sqrt{\pi} \sum_{n=1}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})}\ (\frac{x}{2})^{n}$ (3)

Now we consult the excellent library of the University of Bonn and here we find...

$\displaystyle \sum_{n=0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})}\ z^{n}= \frac{1}{\sqrt{\pi}\ (1-z)}\ (1+ \frac{\sqrt{z}\ \sin^{-1} \sqrt{z}}{\sqrt{1-z}}) $ (4)

... so that is...

$\displaystyle \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}= 2\ (1+ \sin^{-1} \frac{1}{\sqrt{2}})-1= 1 + \frac{\pi}{2}$

Kind regards

$\chi$ $\sigma$
 
Last edited:
Krizalid said:
Compute the following series:

$$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$

The series can be written as

$\displaystyle \sum_{k \ge 1}\frac{k!}{(2k-1)!} = \sum_{k \ge 1}\frac{k!^2 2^k}{(2k)!} = \sum_{ k \ge 1}\frac{2^k}{\binom{2k}{k}} $

Consider the series

$\displaystyle \left(\sin^{-1}{x}\right)^2 = \sum_{k \ge 1}\frac{2^{2k-1}x^{2k}}{k^2 \binom{2k}{k}}$

Differentiating both sides gives$\displaystyle\frac
{2\sin^{-1}{x}}{\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k}x^{2k-1}}{k \binom{2k}{k}}$

Rearrange it as

$\displaystyle\frac
{x\sin^{-1}{x}}{\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k-1}x^{2k}}{k \binom{2k}{k}}$

Differentiating both sides we get

$\displaystyle \frac
{\sin^{-1}{x}+x\sqrt{1-x^2}}{(1-x^2)\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k}x^{2k-1}}{\binom{2k}{k}}$

Rearrange it as

$\displaystyle \frac
{x\sin^{-1}{x}+x^2\sqrt{1-x^2}}{(1-x^2) \sqrt{1-x^2}} = \sum_{k \ge 1}\frac{(2x)^{2k}}{\binom{2k}{k}}$

Put $x = \frac{1}{\sqrt{2}}$, then:

$\displaystyle 1+\frac{\pi}{2} = \sum_{k \ge 1}\frac{2^k}{\binom{2k}{k}}.$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top