Compute Two Series: Summation Notation

  • Context: MHB 
  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Series
Click For Summary
SUMMARY

The forum discussion focuses on computing two specific series involving summation notation. The first series, represented as $$\frac{1}{2} - \frac{{1 \times 3}}{{2 \times 4}} + \frac{{1 \times 3 \times 5}}{{2 \times 4 \times 6}} \mp \cdots$$, converges to $$1 - \sqrt{\frac{1}{2}}$$. The second series, $$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \cdots$$, is more complex and is computed using the gamma function, ultimately yielding the result $$1 + \frac{\pi}{2}$$.

PREREQUISITES
  • Understanding of series and summation notation
  • Familiarity with gamma functions and their properties
  • Knowledge of arcsine series expansions
  • Basic calculus, including differentiation techniques
NEXT STEPS
  • Study the properties of the gamma function and its applications in series
  • Learn about arcsine series and their convergence
  • Explore advanced techniques in series manipulation and differentiation
  • Investigate the relationship between combinatorial identities and series
USEFUL FOR

Mathematicians, students studying calculus or advanced series, and anyone interested in the convergence of complex series and their applications in mathematical analysis.

Krizalid1
Messages
106
Reaction score
0
Compute the following series:

$$\frac{1}{2} - \frac{{1 \times 3}}{{2 \times 4}} + \frac{{1 \times 3 \times 5}}{{2 \times 4 \times 6}} \mp \cdots ,$$ $$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$
 
Physics news on Phys.org
Krizalid said:
Compute the following series:

$$\frac{1}{2} - \frac{{1 \times 3}}{{2 \times 4}} + \frac{{1 \times 3 \times 5}}{{2 \times 4 \times 6}} \mp \cdots ,$$

Remembering that is...

$\displaystyle (1+x)^{-\frac{1}{2}}= 1 - \frac{1}{2}\ x + \frac{1\ 3}{2\ 4}\ x^{2} - \frac{1\ 3\ 5}{2\ 4\ 6}\ x^{3} + ...$ (1)

... is...

$\displaystyle \frac{1}{2} - \frac{1\ 3}{2\ 4} + \frac{1\ 3\ 5}{2\ 4\ 6}- ...= 1- \sqrt{\frac{1}{2}}$ (2)

Kind regards

$\chi$ $\sigma$
 
Last edited:
Yes, that's correct.
Second series is harder though.
 
I think that the second problem has some thing to do with \( \displaystyle \arcsin(x)=\sum_{0}^{\infty}\frac{(2n)!}{4^n (2n+1) (n!)^2}x^{2n+1}\).
 
Krizalid said:
Compute the following series:

$$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$

The solution of the second series is effectively a little more difficult task!... let's start defining...

$\displaystyle \varphi(x)= \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}\ x^{n}$ (1)

... so that is $\displaystyle \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}= \varphi(1)$. Introducing the gamma function, taking into account that is...

$\displaystyle (2n-1)!= \frac{2^{n}}{\sqrt{\pi}}\ \Gamma(n+\frac{1}{2})$ (2)

... the (1) becomes...

$\displaystyle \varphi(x)= \sqrt{\pi} \sum_{n=1}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})}\ (\frac{x}{2})^{n}$ (3)

Now we consult the excellent library of the University of Bonn and here we find...

$\displaystyle \sum_{n=0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})}\ z^{n}= \frac{1}{\sqrt{\pi}\ (1-z)}\ (1+ \frac{\sqrt{z}\ \sin^{-1} \sqrt{z}}{\sqrt{1-z}}) $ (4)

... so that is...

$\displaystyle \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}= 2\ (1+ \sin^{-1} \frac{1}{\sqrt{2}})-1= 1 + \frac{\pi}{2}$

Kind regards

$\chi$ $\sigma$
 
Last edited:
Krizalid said:
Compute the following series:

$$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$

The series can be written as

$\displaystyle \sum_{k \ge 1}\frac{k!}{(2k-1)!} = \sum_{k \ge 1}\frac{k!^2 2^k}{(2k)!} = \sum_{ k \ge 1}\frac{2^k}{\binom{2k}{k}} $

Consider the series

$\displaystyle \left(\sin^{-1}{x}\right)^2 = \sum_{k \ge 1}\frac{2^{2k-1}x^{2k}}{k^2 \binom{2k}{k}}$

Differentiating both sides gives$\displaystyle\frac
{2\sin^{-1}{x}}{\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k}x^{2k-1}}{k \binom{2k}{k}}$

Rearrange it as

$\displaystyle\frac
{x\sin^{-1}{x}}{\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k-1}x^{2k}}{k \binom{2k}{k}}$

Differentiating both sides we get

$\displaystyle \frac
{\sin^{-1}{x}+x\sqrt{1-x^2}}{(1-x^2)\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k}x^{2k-1}}{\binom{2k}{k}}$

Rearrange it as

$\displaystyle \frac
{x\sin^{-1}{x}+x^2\sqrt{1-x^2}}{(1-x^2) \sqrt{1-x^2}} = \sum_{k \ge 1}\frac{(2x)^{2k}}{\binom{2k}{k}}$

Put $x = \frac{1}{\sqrt{2}}$, then:

$\displaystyle 1+\frac{\pi}{2} = \sum_{k \ge 1}\frac{2^k}{\binom{2k}{k}}.$
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K