Computing Inner Products of Vectors: a,b,c,d,e,f

  • Thread starter Thread starter alkhaldi20
  • Start date Start date
  • Tags Tags
    Computing Vectors
alkhaldi20
Messages
1
Reaction score
0
Hi everyone,

I need help with this problem. I just can't get it:

Let a,b,c,d,e and f be vectors such that \langle a,b \rangle=-4, \quad \langle a,c \rangle=-9, \quad \langle b,c \rangle=2, \quad b+c=d, \quad -4 a+3 b=e and -4 b+5 c=f. Compute the following inner products:

\langle b,a \rangle=
\langle a,d \rangle=
\langle e,c \rangle=
\langle a,f \rangle=
 
Physics news on Phys.org
Which question are you having trouble with? You have to apply the fact that the inner product is symmetric and linear in each argument. That is, for all vectors u, v, and w and all scalars a, we have:
<br /> \langle u, v\rangle = \langle v, u\rangle<br />
and
<br /> \langle au + v, w\rangle = a\langle u, w\rangle + \langle v, w\rangle<br />
 
alkhaldi20 said:
Hi everyone,

I need help with this problem. I just can't get it:

Let a,b,c,d,e and f be vectors such that \langle a,b \rangle=-4, \quad \langle a,c \rangle=-9, \quad \langle b,c \rangle=2, \quad b+c=d, \quad -4 a+3 b=e\ and -4 b+5 c=f\,.\

Compute the following inner products:

\langle b,a \rangle=
\langle a,d \rangle=
\langle e,c \rangle=
\langle a,f \rangle=
I put the \left[\text{tex}\right]\left[\text{/tex}\right] tags in for you.

\langle a,d \rangle=\langle a,b+c \rangle=\langle a,b \rangle+\langle a,c \rangle=\, etc.
 
Last edited:

Similar threads

Back
Top