Notice that the inverse Fourier transform of the Heaviside step function:
<br />
\int_{-\infty}^{\infty}{\frac{d k}{2\pi} \, \theta(k) \, e^{i \, k \, x}} = -\frac{1}{2\pi \, i \, x}, \ \mathrm{Im}x > 0<br />
Thus, we may represent the Heaviside step function as:
<br />
\theta(k) = -\frac{1}{2\pi \, i} \, {d t \, \frac{e^{-i \, k \, t}{t + i \, \eta}}, \ \eta \rightarrow +0<br />
Why do we need it? Because your integral goes to:
<br />
\int_{-\infty}^{\infty}{f(k) \, e^{i \, k \, x} \, \theta(k)}<br />
If you substitute the integral representation for the step function and change the order of integration, you should get:
<br />
-\frac{1}{2\pi \, i} \, \int_{-\infty}^{\infty}{\frac{d t}{t + i \, \eta} \, \int_{-\infty}{\infty}{f(k) \, e^{i \, k \, (x - t)}}}<br />
Now, you may use the residue theorem for the integral over k, but you need to close the contour in different half-planes, depending on whetgher x > t or x < t. The remaining integral over t is again over the whole real line, but , due to the above conditions, should be split into -\infty to x, and from x to \infty]. Then, making a sub