Bashyboy
- 1,419
- 5
Homework Statement
(a) Compute the vector gravitational field at a point P on the perpendicular bisector of the line joining two objects of equal mass separated by a distance 2a as shown in Figure P13.26. (b) Explain physically why the field should approach zero as r ---> 0. (c) Prove mathematically that the answer to part (a) behaves in this way. (d) Explain physically why the magnitude of the field should approach 2*(GM/r^2) as r --> infinity. (e) Prove mathematically that the answer to part (a) behaves correctly in this limit.
Homework Equations
The Attempt at a Solution
\vec{F}_0 = -2 \frac{Gmm_p}{\sqrt{r^2 + a^2}} \hat{i} is the equation I generated.
From the diagram, it is evident that, as r approaches zero, the point of interest becomes located in between the two fixed masses; furthermore, one can see that the two masses with pull equally in the j-hat direction, but anti-parallel, thereby causing all gravitational forces produced by the two masses to cancel. However, why is it that, when taking the limit as r --> 0, the mathematics does not show this?