Concavity of a function: y=2/3x^3-x^2+3x+5

  • Thread starter Thread starter Hollysmoke
  • Start date Start date
  • Tags Tags
    Function
Hollysmoke
Messages
185
Reaction score
0
I just wanted to make sure I did this right:

y=2/3x^3-x^2+3x+5
y’=2x^2-2x+3
y’’=4x-2
=2(2x-1)


2x-1=0
2x=1
x=1/2

And then I substitute x into the original equation to find the IP, right?
 
Physics news on Phys.org
Yes, that's correct.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top