Conceptual question - relative accleration of rigid bodies

AI Thread Summary
The discussion centers on the confusion regarding the acceleration components of links AB and BD in a dynamics problem involving rigid bodies. Despite link AB rotating at a constant angular velocity, it is clarified that link BD can experience both normal and tangential acceleration due to its relative motion. The participants emphasize that the relative velocity diagram reveals the complexities of translation and rotation affecting link BD. Additionally, the acceleration analysis at specific positions, such as when theta equals zero, helps clarify the relationship between normal and tangential components. Ultimately, the understanding of these acceleration components is crucial for solving dynamics problems involving rigid bodies.
prettydumbguy
Messages
17
Reaction score
0
Engineering news on Phys.org
To my knowledge, link AB should only have a normal component of acceleration. Whereas, link BD could have a combination of both normal and tangential. Also, point P will only a tangential acceleration.

Even though link AB has constant angular velocity, doesn't mean that BD will also have constant angular velocity. As if you were to do the relative velocity diagram of this problem you'd notice that there is both translation and rotation of link BD.
 
Sirsh said:
To my knowledge, link AB should only have a normal component of acceleration. Whereas, link BD could have a combination of both normal and tangential. Also, point P will only a tangential acceleration.

Even though link AB has constant angular velocity, doesn't mean that BD will also have constant angular velocity. As if you were to do the relative velocity diagram of this problem you'd notice that there is both translation and rotation of link BD.

Hmm, so if I have theta=0, AB and BD are both going straight up and D is at its highest point, what happens then? The normal acceleration in AB doesn't change, but then the acceleration of BD would be (alpha x rBD) + w x (w x rBD). So the tangential acceleration would be k x j = i. Then the normal would be j x k = i, k x i =j? I think I get it now.
 
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top