Condition for expectation value of an operator to depend on time

AlexCdeP
Messages
39
Reaction score
1

Homework Statement



A particle is in a 1D harmonic oscillator potential. Under what conditions will the
expectation value of an operator Q (no explicit time dependence) depend on time if
(i) the particle is initially in a momentum eigenstate?
(ii) the particle is initially in an energy eigenstate?

Homework Equations



The first two parts of this question required me to show that

\frac{d}{dt}<Q> = \frac{i}{hbar} <[H,Q]> + <\frac{d}{dt}Q>

Q is any hermitian operator. I did this fine and then derived the virial theorem from this, which is where the rate of change of the expectation for Q is zero. I'm assuming I'm supposed to use this equation to find the conditions, but to be perfectly honest I have no idea how to approach this at all.

I know that if the operator commutes with the Hamiltonian H then it will have no dependence on time, but how can I use this to answer the question?
 
Last edited:
Physics news on Phys.org
Please delete this post.
 
Last edited:
davidchen9568 said:
Please delete this post.

Thanks for the help david, what a complete waste of both of our time. Maybe it's far too obvious for you? I have no idea what's wrong with my post, so it'd be great if you could enlighten me.
 
I think David meant he wanted his post deleted, not your thread.
 
Oh sorry, apologies if that's the case.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top