Finding E(Y) and Var(Y) with Conditional Expectation

island-boy
Messages
93
Reaction score
0
Is it possible to solve for E(Y) and var (Y) when I am only given the distribution f(Y|X)?

I can solve for E(Y|X). But is it possible to find E(Y) and var(Y) given only this info?
 
Physics news on Phys.org
No it is not. Let Y be distributed as f(x) = .5 if x = -1 or 1, 0 otherwise. Let X be distributed as f(x) = 1 if x = 1, 0 otherwise. Then f(Y|X) is the distribution of X. You can change the mean and variance of Y to almost whatever you want by moving the other probability mass, and f(Y|X) will not be affected.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top